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Prologue

This course provides an introduction to Relativity (Special and General). This course
covers the historical, experimental basis for relativity and an exposition of the major
concepts and features of relativity. As an instructor I think it important to include
material that involves practical and important applications as well as the material that
brings out the content of the concepts of relativity. The natural applications include
high energy physics, astrophysics, and cosmology. The last two are particularly
relevant for applications of General Relativity.

At Berkeley this course originated in 1973 as a result of Chairman Eugene
Commins discussions with undergraduate physics majors who felt that they had an
inadequate view of Special Relativity in that it was treated piecewise in mechanics, E
& M, quantummechanics, atomic physics, and the nuclear and high energy. However,
there was no overall all view of Special Relativity. Eugene Commins then asked David
Judd to prepare and give an experimental course for graduating seniors in their last
semester (Spring 1973). It was successful and became a regular course { Physics 139.
The course has been given in the spring ever since.

Spring 1998 is the �rst time that I have taught the course and added signi�cant
astrophysics material at the request of the students taking the course.

Special Relativity can be taught (or learned) from many perspectives. The
most basic of these is a rigorous investigation of the experimental basis for the physics
of Relativity. A second approach is to start with the postulates of Einstein and derive
the consequences and an understanding of Relativity. A third approach is top down.
It begins with assumptions about space-time being 3 + 1 pseudo-Euclidean space and
formulates physics in terms of a 4-dimensional space-time. This leads to the powerful
and useful concept of 4-D vectors. In this course you will exposed to all three of these
approaches and occasionally some others. These notes are meant to provide much
of the experimental background and some explanation of the approaches. Lectures
focus primarily on the second and especially the third approach as a natural lead into
the geometrical version of General Relativity.

We emphasize the experimental basis because a scienti�c theory is a living
entity; it grows and changes with time. Physics is a description of Nature. The �nal
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arbiteur of its validity is Nature, that is observations of Nature and not aesthetic
principles or pronouncements from the prominent. Thus no matter how beautiful,
economic, consistent, or other wise pleasing a model or theory construct might be, it
must agree with experimental observations. The second and third approaches assume
principles and postulates and derive a consistent picture. That picture has to agree
with observation and the logical consequences of those observations. Thus the early
lectures and notes emphasize the experimental basis to the later logical deductions
and tools developed and as a balance to the postulates of Special Relativity and the
more extended approach following Minkowski geometry.

1 Introduction

The Special Theory of the Relativity of Motion is con�ned to relativity of uniform
motion translatory motions of coordinates in free (\No Gravity") space.

1.1 General Ideas of Space and Time

We usually use concepts arising from spatial and temporal measurements without
considering their philosophical implications, if any.

1. Concept of Time
2. Concept of Space
3. The Space and Time of Newton and Galileo
4. The Space and Time of the Ether Theory

1.1.1 Properties of Time

1. Time is a continuum. One can �nd a time between any two times.
2. Time is one dimensional. A single number de�nes time uniquely.
3. Time is homogeneous. It has the same properties in the past, present and future.
4. Time is anisotropic. Forward and backward in time are di�erent. This is actually
controversial since the the laws of physics seem to be invariant (to high order) to the
direction of time.
5. Time is single-valued. This is the assumption, not necessarily founded, that a
completely cyclic universe is ruled out. We do not revisit a previous state.

How do we get knowledge?
! time

Past Present Future

Memory ! Experience! prediction

Inference premonition
Irreversibility: Evidenced by second law of thermodynamics. Entropy increases with
time.
Psychology: Memory of past times distinguish them from others to be encountered
later.
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1.1.2 Properties of Space

1. Space is a continuum. One can �nd a point between any two points. 1

2. Space is three dimensional. Three numbers speci�es a point.
3. Space is homogeneous. It has the same properties in all regions.
4. Space is isotropic. There is no spatial \arrow". All directions are equivalent.
5. Space is single-valued. Point labels are unique.
6. Space is Euclidean. The di�erential distance is given by Pythagoras by

ds2 = dx2 + dy2 + dz2 (1)

Most of these are called into question by things that we know.
1. Uncertainty Principle from Quantum Mechanics
2.
3. Gravity: Strong in some places, weak in others.
4. Electric, Magnetic, and Gravitational �elds.
5.
6. \Curved Space" due to energy density distribution in General Relativity.

1.2 The Space & Time of Galileo & Newton

1.2.1 The First Law of Motion

If no force, bodies remain at rest or have uniform straight-line motion.
Aristotle: The natural state of a body is a state of rest.

But a body in a natural state in reference frame S is also in a natural state in

1Strictly continuum needs a more precise de�nition. To physicists actually space is a continuous

manifold. The mathematical property is (local) completeness. It is not enough that between any

two points there is another. Mathematically we require that if we have a sequence of points that

gets closer and closer together (a Cauchy sequence), then there is some point to which the sequence

converges; i.e. limits exists.

The property of what it means to be a continuum or not is best borne out by the Intermediate

Value Theorem, which may be stated (in physical terms, in a 1-dimensional system): if an object

is moving along a straight line (possibly changing directions) and is recorded to have been at point

a and subsequently point b, then the object passed through every point in between. Space being a

continuum de�nes what we mean by \every". Usually, what this means is that the points between

a and b are labelled by the real numbers between 0 and 1, and the object passed through a point

with each such real number label. The distinction that is made in, say, quantum mechanics, is

that there may be *no* points between a and b, and furthermore, there may have been *no* times

between when the object was measured at point a and point b. Of course quantum mechanics takes

care of this discreteness by being probabilistic, but the distinction from being a continuum is there,

nonetheless.
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1.2.2 The Second Law of Motion

~F = m~a; Fx = m
d2x

dt2
; Fy = m

d2y

dt2
; Fz = m

d2z

dt2
(2)

This is actually a de�nition of force. This de�nition of force provides the same force
in reference frames S and S0, because the acceleration is the same in either.

It also provides a de�nition of inertial mass m. Masses can be compared with
a standard mass { the unit of mass.

There are many methods:
Static:

Pan balance is used and one assumes Fgravity / m.
Spring balance which assumes Fgravity / m and Hooke's law.

Dynamic:
m1v1 = m2v2

s
Rotation around a point at rest

m1v1 = m2v2

Collide, stick, & stop

?
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1.2.3 The Third Law of Motion

This law states conservation of momentum in an isolated system. It is equivalent to

~Fon 1 due to 2 = �~Fon 2 due to 1 (3)
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That is for every force there is an equal and opposite reaction. This follows by use of
the second law on an in�nitesimal mass at the point of contact of 1 and 2. It yields
consistency in reference frames S and S0.

1.2.4 The Final Picture

1. Nothing exists in space with respect to which one can measure an \Absolute
Velocity".
2. Velocity of light could only depend on the velocity of its source
3. Space and time are independent continua.

1.2.5 Space and Time of the Ether Theory

Electromagnetic disturbances propagate with velocity c in accordance to the wave
equation  

@2

@x2
+

@2

@y2
+

@2

@z2

!
� = r2� =

1

c2
@2�

@t2
(4)

A particular solution is a plane wave

� = �0sin [2�� (t� x=c)] (5)

x, y, and z are to be measured with respect to the medium (ether, or a solid or liquid)
in which the waves are propagated.

It is inconceivable to have waves without a medium. Consider sound waves,
elastic waves (strings, rods), shock waves, E-M waves. Thus it was necessary for the
theory of electromagnetism (EM) to have the ether for light to propagate through
and provide a consistent set of theory. Maxwell's Equations do predict light that
propagates with a speed c. But the question is what is that speed with respect to?

The Formal Ether Picture
A. Space is �lled with an ether with respect to which an \Absolute Velocity" should
or could be measured.
B. The velocity of light is independent of the velocity of its sources; always c with
respect to the ether or vacuum.
C. Space and Time are independent continua.

Implicitly, in the Ether theory turbulence and relative motion of parts of the
Ether are ruled out.

Why was the Ether taken as stationary? That is una�ected by motion of
matter and without relative motions of its parts.

We try to create a picture of how inevitable the ether theory seemed for a very
long time, and to describe some of the crucial experiments that supported it for so
long. Every student should know about the lengthy debate over the nature of light -
particles or waves?

Newton thought \particles". His prestige as the greatest physicist of all time
was enormous. As we know now, he was not wrong! (Light comes in quanta.)
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Table 1: Kinds of experiments about the Ether:

A. In the Neighborhood of Moving Matter
Bradley 1725
Lodge 1892

B. Inside of Moving Media
Fresnel 1818
Fizeau 1851
Airy 1871
Michelson-Morely 1896
Trouton-Noble 1903

The wave nature of light was �nally proved beyond a doubt by Young and
Fresnel by display of interference, di�raction, and polarization.
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Bradley's Discovery of Aberration
Reasoning by analogy of the behavior of a pennant on a sail boat in the wind:

boats

pennants
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led Bradley to consider a star's position variation between June and December.
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� is de�ned as the aberration angle and

tan� =
v

c
=

30 km=sec

3 � 105 km=sec
' 10�4 � 20 arcsec (6)

Bradley observed it! A motion of a star's position of about 4100 over the course
of a year.

Bradley's observation could be explained either by a �xed Ether theory or a
corpuscular theory. (But not by a moving ether theory.)

We can derive this carefully in the following manner: Light from the star goes
from the top (A) to the bottom (B) of the telescope in Ether system in a time �t.
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It goes from (A) to (C) in the moving telescope system with a speed we can calculate
to be

c0
2

= c2 + 2vc cos� + v2

by the law of cosines. By the law of sines

sin�

sin�0
=
v

c

Thus

tan�0 =
sin�

cos� + v=c

Galilean transformation of an ether wave:

�t0 = �t
x0i = xi � vit

y0i = yi
z0i = zi (7)

n̂ = (�cos�; �sin�; 0) (8)

Amplitude is proportional / cos	 = cos! (t� n̂ � ~x=c) in Ether system. 	 being
constant is a �xed phase and thus a wave front.

In the moving system Ether system
	 = !0 (t� n̂ � ~x0=c00) 	 = ! (t� n̂ � ~x)
We assert that

!0 = !

�
1 +

r

c
cos�

�

which is the Doppler e�ect and

c00 = c+ v cos�

To show that this is true, plug into the equations.

	 = !

�
1 +

v

c
cos�

�"
t� nx(x� vt) + nyy

c+ vcos�

#
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= !

�
1 +

v

c
cos�

�"
t� n̂ � ~x

c(1 + v
c
cos�)

+
nxvt

c(1 + v
c
cos�)

#

= !

"
t+

vtcos�

c
� n̂ � ~x

c
+
nxvt

c

#

= !

"
t+

vtcos�

c
� n̂ � ~x

c
� cos�vt

c

#

= !

 
t� n̂ � ~x

c

!
(9)

Which checks the �rst claim. (Writing these equations in reverse order veri�es both
claims.)

c00 = c+vcos�= component of the ray velocity perpendicular to the wave front
in the moving (telescope) system: The angle between the ray and n̂ is � = � � �0.

c00 = c0cos� = c0cos(� � �0)
= c0cos�0cos� + c0sin�0sin� (10)

From the geometry:

c0cos�0 = ccos� + v base of right triangle
c0sin�0 = csin� height of right triangle (11)

Doppler Shift:

�0 = �

�
1 +

v

c
cos�

�
(12)

This is the same as for sound with a �xed source and moving observer. For sound
with a �xed observer and a moving the source, the di�erence is second order in v=c.
Oliver Lodge (1892) tried to observe the Ether drag by a nearby heaving moving
mass. He used a huge iron sphere of mass 1400 pounds (about 600 kg) in which there
were a deep circumferential slot positioned horizontally. He rotated the sphere about
a vertical axis and split a beam of light and sent them around in opposite directions
through the slot in the sphere via a system of mirrors. He found no di�erence in the
two beams behavior depending upon the rotation of the heavy mass.

Oliver Lodge was a fellow of the Royal Society and a professor of physics at
the University College of the University of Liverpool. He published the result of
many years of e�ort as articles in the Philosophical Transaction of the Royal Society
of London, Series A. Volume 184 pp. 727-804 (1893) and Volume 189 pp. 149-166
(1897) \Experiments on the Absence of Mechanical Connection Between Ether and
Matter". In his experiment Lodge observed the interference between portions of a split
light beam traveling in opposite directions around a closed path in the space between
two rapidly rotating steel disks. The disks were circular saw disks of diameter 3 feet,
rotating in a horizontal plane at up to 3000 r.p.m. The separation was about 1 inch
and the beams made four complete circuits around the rotating mass axis. The result
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of years of experiments was a null e�ect. The speed of light was una�ected by motion
of adjacent matter to the extent of one part in 200 of the speed of the matter.

Lodge then replaced the disc with a heavy (1400 lbs) Swedish-iron oblate
spheroid with a half inch width groove cut one foot deep into the sphere. His
long experimental program had many problems to over come including: overheated
bearings, heated air, miscellaneous vibrations, safety concerns, and the fact that it
took one half hour to slow down.

He obtained speeds up to 100 r.p.m. and also considered that drag might take
hold slowly so he tried for three hours. Lodge also added magnetic and electric �elds
perpendicular to the velocity and always found a null e�ect.
Fresnel (1788-1827)

Fresnel worked upon the theory of the Ether. He indicated that the density of
Ether in a transparent material is proportional to the square of the index of refraction
n.

vlight in body =
c

n
;

�Ether in body

�Ether in space

= n2 (13)

When a body moves through the Ether, part of the Ether is carried along {
the part in excess of the vacuum value. The rest of the Ether remains stationary.
The density carried along is equal to �body��vacuum = (n2 � 1) �vacuum. The part that
does not move is �vacuum.

Thus the center of gravity of the Ether moves with velocity

vc:m: Ether =
(n2 � 1) vb + 1 � 0
(n2 � 1) + 1

=
n2 � 1

n2
vb =

�
1 � 1

n2

�
vb (14)

where vb is the velocity of the body or medium. This velocity is to be added to the
wave velocity c=n in the body, so that the light speed in the moving body is

vlight in moving medium =
c

n
+
�
1 � 1

n2

�
vmedium (15)

The quantity � �
�
1� 1

n2

�
is named the Fresnel Drag Coe�cient.

Fizeau (1851)
Fizeau measured the speed of light in a moving transparent medium.
If there is a velocity drag proportional to the medium velocity (c0 = c=n+ �v)

the prediction for the experiment as shown in the �gure is:
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For the counterclockwise traverse, c0 = c=n + �v. The total number of
wavelengths in the horizontal path is 2L=�0 = 2Lf=c0 = 2Lnf=(c + n�v)

In the clockwise traverse, c0 = c=n � �v. The total number of wavelengths in
horizontal path is 2L=�0 = 2Lf=c0 = 2Lnf=(c � n�v). The di�erence in wavelengths
of the two paths shows up as the number of interference fringes:

Number of fringes = 2Lnf
�

1

c� n�v
� 1

c+ n�v

�
' 4�n2Lv

c

f

c
=

4�n2Lv

�c
(16)

Fizeau (1851) veri�ed Fresnel's drag coe�cient using water. Michelson and
Morely (1886) repeated the experiment much more accurately using: water, carbon
disul�de, and other transparent liquids most with high n.
Stokes (18xx)

Stokes obtained Fresnel's drag coe�cient by assuming that the Ether was a
compressible but conserved uid. If the Ether has an apparent velocity v, then for
a transparent material v0 = (1 � �)v. If the Ether density would be � = �0 in
vacuum, then �0 = n2�0 in a transparent material with index of refraction n. If
the Ether is conserved, then �0v = �0v0 = n2(1 � �)�0v so that n2(1 � �) = 1, and
� = 1� 1=n2 = (n2 � 1)=n2 which is Fresnel's value.
Sir George Airy

Sir George Airy, a famous British astronomer, had in 1871 the very clever
idea to repeat Bradley's aberration measurements using a water-�lled telescope.
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Snell's Law (ca. 1600) says that

n =
sin�

sin	
= �

Light travels through the water-�lled telescope tube with velocity c0 = c=� relative
to the Ether in the water. The velocity of the Ether with respect to the water is �v
where � = (�2 � 1)=�2 is Fresnel's drag coe�cient. The velocity of the water with
respect to the outside Ether is v the nominal speed of the telescope and the velocity
of the water relative to the inside Ether is (� � 1)v. Distances d and ` are in ratio

d

`
=

(1 � �)v

c=�

since they take the same �t.
By the law of sines:

d

`
=
sin	

sin�0
=

(1 � �)v

c=�

Note that it is alright to apply Snell's law in the telescope frame. Arago showed
in 1810 that, in refraction, light acts as if its source is where it seems to be due to
aberration. Thus

sin	

sin�0
= (1 � �)�v=c

so that
sin	 = sin�=� (Snell)

giving
sin�

sin�0
= (1 � �)�2v=c
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If there is no water, � = 0 and � = 1, so

sin�

sin�0
= v=c

which is Bradley's aberration observation result.
Experimentally, � is known to be (�2�1)=�2 so that 1�� = 1=�2, which leads

to the prediction
sin�

sin�0
= v=c

Just as before!! Airy's telescope observed the same aberration with water as without.
This seemed to tie down the Ether Theory very well!
Is it plausible that the Ether Density should be proportional to �2? Vsound =q

E=� =
q
Elastic Modulus=Density so � / 1=v2 / (�=c)2.

The Ether Theory was brought to its highest point by Lorentz (of the \Lorentz
Contraction"). He explained the Fresnel Drag by \Electron Theory". In a moving
transparent medium, light interacts with electrons which move along with the medium
with velocity v.

Allowing for this but leaving the Ether �xed, you can get � = (n2� 1)=n2 but
otherwise not.

If the Ether were dragged along, you would get c0 = c=�+ v. But you actually
get only part of this c0 = c=� + �v, because of the interaction.

Hammer's experiment (1932) was also consistent with the Ether Theory, as
was Sagnac's experiment (1915).

1.3 Summary

Postulates a and b together imply that the velocity of light is independent
of the relative velocity of source and observer! There are further postulates from
mechanics, electrodynamics, and thermodynamics needed to give a complete theory
of Special Relativity.

1.4 The Nature of a Deductive System

It is \Universe of Discourse" containing objects, relations between the objects, and
rules for getting more relations from previous ones. The relations are statements that
take the form of de�nitions, postulates, and theorems; while the rules are the logic one
is allowed to apply for manipulation of these statements. One begins with objects
that are unde�nable but have certain given relations between them (axioms). In
practice, the axioms will depend on which scienti�c theory we are exploring, whereas
the logic we use is independent of which system we are considering.
Desirable properties of a scienti�c deductive system: 2

2Consistency and Completeness are technical terms in formal logic. I say \desirable properties"
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Table 2: SUMMARY
Newton & Galileo Ether Theory

No Reference System There is a reference system (ETHER)
for Absolute Velocity for Absolute Velocity

The velocity of light The velocity of light
depends on the is independent of

velocity of its source that of its source
Space and time are independent Space and time are independent

Einstein's Special Relativity Theory
Postulates: a. No reference system

for absolute velocity
b. velocity of light

independent of source velocity

Result: c. Space and time are inter-related

(a) Internal Coherence: No contradictions can be reached from the axioms
using the given logic.

(b) Completeness: If a true statement can be made, then it can be proved.
(c) Meaning: The true statements have their intended real-world

interpretations.
(d) Aesthetic Structure: No superuous de�nitions and postulates. i.e. the

smallest possible numbers. Fewest number of inde�nables. They should be simple,
clear, and perhaps chosen to connect to past systems.

(e) A su�cient number of inde�nables and a su�cient number of de�nitions
and postulates to produce a structure of theorems.

instead of \test of a good" scienti�c deductive system because it is a theorem of Kurt Godel ( 1930)

that it is impossible to have a meaningful deductive system in which all true statements are provable;

in other words, it is impossible to have a (su�ciently complex formal) system which is both consistent

and complete. (Needless to say, we usually opt for consistency over completeness.) Nevertheless, it

would still be nice if we could prove all true propositions. In any case, it is possible that, in any

given system, all of the true statements which we actually care about are provable.

Another disturbing theorem is that in any su�ciently complex consistent system there are

statements which are neither true nor false, in the sense that either the statement or its converse

could be added as an axiom without making the system inconsistent. There are explicit examples

of such statements in very well-known and common-sense theories which we tend to think model

the real world. Whenever physicists come up with an undecidable statement, there is usually some

concurrence on which (the statement or its converse) \reects reality", and a new axiom is added. Or,

there can be lengthy debate as to what \reects reality". For instance, the particle/wave postulate

for light was for a long time unresolved, and even now, which axiom is chosen depends on the model

of physics being used (particles are \good enough for some purposes", as are waves).
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This is the end of the line for pure mathematics.
(f) Usefulness in Explaining Phenomena: Providing a map of the external

world

lations
Corre-

Statements

Subject Matter

External World

&%
'$

Universe of Discourse

We would like to compare and check postulates with the external world, but
they are usually too general. But deductions from them can be checked!

1.5 Postulates of Special Relativity

I. It is impossible to measure or detect the absolute velocity of a body in free space.
All we can measure is relative velocity of one body with respect to another.

These ideas/principles come from Galileo and Newton.
II. The velocity of light is independent of its source.

This idea comes from the Ether Theory.
Consequences: Light velocity is independent of relative velocity of source

and observer.
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1 Tests of the First Postulate

1.1 The Michelson-Morely Experiment

Michelson Am J. Sci 22, 20 (1881) Michelson & Morely Am J. Sci 34, 333 (1887)
The Michelson-Morely Experiment was designed to measure the Earth's

velocity, v�, through the �xed Ether due to its orbit around the Sun. To do this
Michelson conceived and developed the Michelson interferometer.

`

`

Fringes observed by eye

Source

Light
-

??

?

6

� --
cc

cc

�
�
�
�

�
�
�
� v through Ether

mirror

mirror

-

The two path lengths (labeled `) are made equal for simplicity and ease of
getting a white light fringe.
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The travel time t1 for travel perpendicular to ~v is

�
ct1

2

�2
=
�
vt1

2

�2
+ `2 (17)

t1 =
2`p
c2 � v2

(18)

The time t2 for travel parallel to ~v is

t2 =
`

c � v
+

`

c+ v
=

2c`

c2 � v2
(19)
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So the di�erence in travel times is

t2 � t1 = 2`

"
c

c2 � v2
�
p
c2 � v2

c2 � v2

#

=
2`

c2 � v2

"
c� c+

v2

2c
� � � �

#

=
`

c

v2

c2
+ � � � (20)

Now rotate the apparatus through 90� and repeat the measurement. The total
time di�erence is

�t = 2(t2 � t1) =
2`

c

v2

c2
(21)

and the fringe shift expected is

F =
�t

�
=
c�t

�
=

2`

�

v2

c2
(22)

For the Earth in its orbit around the Sun (v�=c)2 ' 10�8 and for visible light
� � 5� 10�5 cm so that the expected fringe shift is

F � 2` � 10�8

5 � 10�5cm
= 4 � 10�4`=1 cm

Sophisticated methods allow detection of 1/300th to 1/1500th of a fringe, but
detection of 1/100th of a fringe is straightforward. To detect this one needs ` > 25 cm.
Michelson and Morely's interferometer had ` = 11 m and used light at 589 nm
(589 � 10�9 m) so that they should have seen about one sixth of a fringe shift.

No shift was ever found !!

This work was repeated many times by di�erent workers. Miller obtained
` = 65 m by multiple reections. The most accurate (in the 1920's) experiments were
by Kennedy (Proc. Nat. Acad 12, 621 (1926)) and Illingsworth (Physics Rev. 30,
692 (1927)).

Consider some of the precautions and sophistications of the best (1920's)
experiments (Kennedy and Illingsworth):

For example they introduced a �=2 step in the middle of one of the
interferometer mirrors.
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�=2 step in the mirror

�-
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mirror

mirror

v through Ether

�
�
�
�

�
�
�
�cc

cc
- -�

6

?

??

-
Light

Source

Fringes observed by eye

`

`

insert picture here showing two o�set sine waves and the fringe

patterns varying from top half dark and bottom bright, both medium

and equal, and top bright and bottom dark.

The path length of the experiment was four meters lading to a fringe shift of
�=20 and the could detect between 1/300th and one 1/1500th of a fringe.

The instrument was calibrated by adding small weights to one arm to �nd
that 7500 grams gave one fringe so 5 to 25 grams (1/1500th to 1/300th fringe) was
detectable.

The instrument was kept to very accurate constant temperature (� 0:001� C?
They tried using polarized light which cuts down on stray light and makes it

easier to adjust the intensity.
They kept the apparatus in a helium-�lled enclosure so that there would be a

smaller e�ect from the gas
nHe � 1

nAir � 1
� 1

10

The results? Illingsworth found v < 10 km/s. Kennedy found v < 2:5 km/s.
More modern results have for the best optical v < 1:5 km/s Charles Townes (Physical
Review Letters 1, 342 1958) using maser oscillators found v < 1=30 km/s which
is equivalent to vEther=vEarth < 10�3 which corresponded to less than 1/50th Hz
variation relative to 23,870 MHz.

1.1.1 Auxiliary Experiment of Hamar

Hamar (Physics Review 48, 462; 1935) did a check to �rst order in v=c. This tests
the ability of matter to obstruct the ow of Ether.
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Hamar could detect less than 1/10th fringe and saw no e�ect which corresponds
to less than 1 km/s.

1.2 The Trouton-Noble Experiment

The Trouton-Noble experiment was performed in Great Britain soon (1903) after the
Michelson and Morely experiment.

Fmag

Fmag

6

?

�q

+q

~v
-

x

x
�
�

�
�
�

To understand the concept of the experiment, consider two opposite charges
held apart by a rod moving at an angle through space. In moving through the ether
charge generates a magnetic �eld (by the Biot-Savart law) and thus each charge

experiences a magnetic force Fmagnetic = �q~v � ~B. The forces point in di�erent
directions and produce a torque on the rod

� =
�o

4�

q2v2

2
sin�cos� =

1

4��o

q

2

v2

c2
sin�cos�

If the rod is tilted and moving relative to the Ether frame, then there will be
a torque on it. Since the Earth is rotating and orbiting, the rod must sometimes be
moving relative to the Ether and so it must have a time varying torque if the Ether
exists.
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To do this experiment Trouton & Noble used a charged capacitor rather than a
rod. The essence is that Trouton & Noble suspended a charged capacitor that would
be free to rotate

~v assumed velocity
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Assuming motion in the direction shown, the magnetic forces make a counter-
clockwise torque on the capacitor.
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This is a direct test of the �rst postulate. No e�ect was found.

1.3 The Kennedy-Thorndike Experiment

The Kennedy-Thorndike experiment results are reported in Phys Rev. 42, 400, (1932).
Thesis: There is a real Ether. There is real motion through it due to the

Earth's motion around the Sun. The Michelson-Morely experiment is correct { there
is a null e�ect because there is a real Lorentz-Fitzgerald contraction, just exactly
su�cient.

Consequence of Hypothesis: The light travel times for both double
traverses of the Michelson-Morely interferometer light paths.

Homework Exercise: Show that the two paths (perpendicular and parallel to
direction of motion) are the same with Lorentz-Fitzgerald contraction. ...

The identity of the form for the two paths shows that the postulated Lorentz
contraction will give a null result in the Michelson-Morely experiment.

20



1.3.1 The Kennedy-Thorndike Apparatus:

(Kennedy was the professor and Thorndike was a graduate student at CalTech.)

�`=2 -�

� -
`

`

Fringes observed by eye

Source

Light
-

??

?

6

-
cc

cc

�
�
�
�

�
�
�
�

v through Ether

mirror

mirror

-

-�

They did not use a 90� angle but that is not important for this discussion.

�t =
�`

c
q
1� v2=c2

=
�`

c

"
1 +

1

2

v2

c2
+ � � �

#

Now change ~v to ~v0.

�t0 =
�`

c

"
1 +

1

2

v0
2

c2
+ � � �

#

The fringe shift

f =
�t0 ��t

�
=

1

2

�`

c�

 
v0

2 � v2

c2

!

where � is the period of the light (inverse of frequency).
The apparatus on the Earth has a 12 hour reversal of the Earth's rotational

velocity which is added in vector form to the Earth's velocity v�around the Sun and
thus Sun's velocity through the Ether. Thus the 12 hour modulation is

v0
2 � v2 = [vE + vS + v�]

2 � [vE + vS � v�]
2 ' 4(vE + vS)v� � 4v1v�

f12 hr =
2�`

�

v1v�
c2

f6 mo =
2�`

�

vSv�
c2

The experimental results are summarized as:
Daily (1930-1931): vS = 24 � 19 km/s based upon 2500 exposures.
Annual (1931): vS = �15� 4 km/s in opposite direction! Based upon 300 exposures.
Weighted Result: vS = 10� 10 km/s { A NULL EFFECT.
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Meaning of this Result: If one keeps the intial hypothesis, one must assume a time
contraction.
Experimental Techniques: Quartz base plate, quartz posts to hold mirrors, since
quartz is thermally stable and mechanically stable. The temperature control was
10�3 �C, since 1�C gives 1/100th of a fringe. An arc light source was not su�ciently
stable. They used � = 5461�A mercury spectral line from an electrodeless discharge.
They took automatic photographs of fringe pattern every 30 minutes. They used �`
of 31.8 cm which was limited by the coherence of light.

What is the energy variation �E of photons whose coherence length is �`?

�p�` � �h � �E�`=c

�E � �hc

�`

E = h� = hc=�

�E

E
� �h

h

�

�`
� �=2�

�`

� � 5460 � 10�8 cm; �` = 31:8 cm

�E

E
� 5460

63:6�
� 10�8 � 2:7 � 10�7

Probable fringe comparator error about 1/100th fringe.
The same apparatus can be used to measure frequency shifts in light sources

when they are placed in an ~E �eld. Thorndike did this experiment and found:

��

�
� (1:1 � 0:8)� 10�14 per volt=cm
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2 Tests of the Second Postulate

2.1 Emission Theory as an Explanation The Michelson-

Morely Experiment

Emission theory: The velocity is c with respect to its source. In the Michelson-Morely
experiment all, including the source, are in the same coordinate frame together, so
of cause a null fringe shift is expected. There are some di�culties with an emission
theory, in general interference and di�raction.

2.2 Di�erent Forms of Emission Theory

Di�erent forms of emission theory vary regarding velocity of light after reection from
a mirror.
1. New Source Theory (Tolman 1910) Light has velocity c with respect to mirror
after reection.
2. Ballistic Theory (J.J. Thomson 1910) Elastic collision of photon with mirror.
3. Persistence Theory (Ritz 1908) ~c0 = ~vsource +~c = velocity of light in one frame. In
Ritz's theory ~c0 = ~vsource +~c is always the same with respect to the original source of
the light.

Summary of Emission Theories Predictions:

v + (�c) = �(c� v) Persistence

�(c+ v) Ballistic

�c New Source
c+ v

+v
-

reected light
�

Light from source-

Sourcex at rest

mirror

Velocity with respect to mirror:

Persistent c
Ballastic (c+ 2v)
New Source (c+ v)

c v
�reected light

�
Light from source-

Sourcex
at rest

mirror

Velocity with respect to source:
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Velocity with respect to mirror image of source:

2v
-

Imagex
-

v

Sourcex
at rest

mirror

In ballistic theory, velocity of light is c with respect to source before reection
and c with respect to source after reection.

2.2.1 Optical Experiments Testing Emission Theories

The Ritz (persistence) theory is much harder to disprove than the others. It takes an
experiment to second order in v=c to distinguish it from the Ether Theory.
1. Interference of Light (Tolman 1910)

-

� -� 10 cm

-

XXXXXXXXXXXXXz���
���

���
����:

fringes
Interference

Source

x
mirror

2. In the New Source Theory, if the velocity of the source is changed, we expect to
observe a fringe shift.

Use light from the two limbs of the Sun:

v = 1:5 km/s
�

v = 1:5 km/s
-

"!
# 

The fringe shift expected is: f
New Source 2 fringes
Ballistic 0
Ritz 0

So as a result the New Source Theory is ruled out.
3. Doppler E�ect Measurement (Tolman 1910)

Reected light perpendicular to the axis of a reection grating.
The emission theory gives a change in frequency but not wavelength, when the

source velocity changes.
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Expected Result: f
New Source no shift

Ballistic wrong direction

Ritz right direction
4. Velocity of light from a moving mirror (Michelson 1913):

Michelson 1913
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One beam travels the circuit in one direction, while the other travels in the
opposite direction. for stationary mirrors the travel times are equal: t1 = t2.

For moving mirrors the calculations are a bit more complicated. d is the
distance that the mirror moves while the light goes a distance 2D

d = 2D
v

c
; d <<< D

New Source Theory Ballistic Theory Ritz Theory

(Ether Theory)

t1
D
c+v

+ D
c
+ 2d

c
2D
c+2v

+ 2d
c

2(D+d)

c

t2
D
c�v +

D
c
� 2d

c
2D
c+2v

� 2d
c

2(D�d)
c

t1 � t2 D
�

1
c+v

� 1
c�v

�
+ 4d

c
2D

�
1

c+2v
� 1

c�2v

�
+ 4d

c
4d
c
= 8D

c
v
c

= �2 dv
c2�v2 +

8Dv
c2

+ 8Dv
c2

= �8D
c

v
c
+ 4d

c

= 6D
c

v
c
+ � � � 0 + � � �

Fringes 6D
�

0 8D
�

v
c

The experimental results are:
Observed = 3.81 fringes
Calculated from Ritz = 3.76 fringes.

This result throws out all emission theories except Ritz Persistence theory.
5. Experiments with Light from Moving Mirrors
6. Experiments with Light from Moving Sources
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or

-`=2�-� d
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Fringes
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The source or the mirror is stationary.
The time lag for interfering rays is �t = `=2 for all theories, if both source and

mirror are stationary.
Velocity of light before reection from the most distant mirror

Moving Mirror Moving Source

New Source c+ v c+ v

Ballistic c+ v (for 45�) c+ v

Ritz c c+ v
New Source Theory:

�t0 =
`=2

c+ v
+
`=2

c
! v�t0

c+ v

because it does not have to leave so soon.

�t0
�
1� v

c+ v

�
=
`

2

c+ c+ v

c(c+ v)
=
`

2

c+ v=2

c+ v

�t0
c

c+ v
=
`(1 + v=(2c))

c+ v

�t0 =
`

c

�
1 +

v

2c

�

The fringe shift is thus

F:S: =
�t0 ��t

�
=

`

c�

�
1 +

v

2c
� 1

�
=

`

c�

v

2c
=

`

2�

v

c

Ballistic Theory:

�t0 =
`=2

c+ v
+

`=2

c+ v
+
v�t0

c+ v

�t0
�
1� v

c+ v

�
=

`

c+ v
; �t0

c

c+ v
=

`

c+ v
:

Thus �t0 = `=c = �t; so that the frame shift is zero.
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Ritz Theory:
In this case we must distinguish between moving source and moving mirror.

Moving Mirror Moving Source

�t0 = `
c
+ v�t0

c
�t0 = `=2

c+v
+ `=2

c�v +
v�t0

c+v

�t0
�
1� v

c

�
= `

c
�t0

�
1 � v

c+v

�
= `

c

�
2c

c2�v2
�

= �t0 c
c+v

= `c
(c+v)(c�v)

�t0 = `
c

�
1 + v

c

�
+ � � � �t0 = `

c�v =
`
c

�
1 + v

c

�
+ � � �

F:S: = �t0��t
�

= `
c
v
�c
= `

�
v
c

F:S: = �t0��t
�

= `
c�

v
c
= `

�
v
c

The results are the same!
For a moving mirror: v = 80 m/s, ` = 23:2 cm, � = 5640 �A, F:S:calc: =

0:113 fringes, F:S:obs: = 0:199 fringe. Similar results were found for moving source.

2.2.2 Michelson-Morely Experiment Using Light from the Sun

Tolman { Phys. Rev. 35, 136 (1912) { pointed out that a Michelson-Morely
experiment using light from the Sun would be a decisive test. This was also pointed
out by LaRosa { Phys. Zeitschrift, 18, 1129 (1912).

In the Ritz Theory, light from the Sun behaves as if the Ether were �xed in the
Sun. The Earth's velocity through the Ether would be 30 km/second as the Earth
orbits the Sun.

Sun~

No Fringes Observed

mirror

mirror
�
�
�
�

�
�
�
�cc

cc
- -�

6

?

??

-

`

`

2.2.3 Astronomical Evidence

Comstock (1910) and DeSitter(1913) pointed out that the light observed from binary
(double) stars provided a test. Consider two stars in orbit about each other.
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The upper portion of the orbit seems to be traversed more quickly than the
lower half in the Ritz Theory. The actual half period is t1 � t2 = �t. The observed
half period is

�t0 =

 
t1 +

`

c� v

!
�
 
t2 +

`

c+ v

!

= t1 � t2 + `

�
1

c� v
� 1

c + v

�

= �t+
2`v

c2 � v2

' �t
2`v

c2
(23)

It turns out that 2`v=c2 is often greater than �t for binary stars. So such a
term (2`v=c2) would lead to very odd e�ects; e.g. seeing the start two or three times
at once, or not at all other times. Circular orbits would appear elliptical, etc.

Binary stars are not easy to observe. Many stars are \spectroscopic binaries".
DeSitter (1913) studied the data on all know binaries and selected some of low

apparent eccentricity (probably nearly circular orbits). His conclusion: c0 - on the
emission theory = c + kv with k < 0:002. While k = 1 is predicted by the emission
theory.

2.2.4 Final \Box Score"

This summary due to Tolman (1946).
Experiments:

1. Michelson-Morely
2. Trouton-Noble
3. Kennedy-Thorndike

Postulate:
4. Interference (lines of the Sun)
5. Doppler E�ect
6. Velocity of light from Moving Mirror
7. Velocity of light from Moving Source
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8. Michelson-Morely experiment with light from the Sun
9. Double stars

Experimental Test \Box Score"
Theories to Test: Experiments

Agree Disagree
Stationary Ether 4, 5, 6, 7, 9 1, 2, 3, 8
Emission Theory - New Source 1, 2, 3 4, 5, 6, 7, 8, 9
Emission Theory - Ballistic 1, 2, 3, 4, 8 5, 6, 7, 9
Emission Theory - Persistence (Ritz) 1, 2, 3, 4, 5, 6, 7 8, 9
Special Relativity - Einstein all none
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2.3 Transformation of  or Dilation Factor

Simple transformation of
q
1� u2=c2 or . Using the transformation laws for velocity

we can derive the transformation law for  or
q
1� u2=c2 by simple algebra. First

calculate the transformation for
q
1 � u2x=c

2

1� u2x
c2

= 1 � (u0x + v)2

(1 + u0xv=c
2)2

=
1 + 2u0xv=c

2 + u02x
c2

v2

c2
� u02x

c2
� 2u0xv=c

2 � v2

c2

(1 + u0xv=c2)2

=
1 � v2

c2
�
�
1� v2

c2

�
u02x
c2

(1 + u0xv=c2)2

=

 
1 � u02x

c2

! �
1 � v2

c2

�
(1 + u0xv=c

2)2
(24)

Now we are ready to do the complete expression

1� u2

c2
=

 
1� u02

c2

! �
1� v2

c2

�
(1 + u0xv=c

2)2
(25)

The square root of this equation gives the transformation law

s
1 � u2

c2
=

s
1 � u02

c2

q
1 � v2

c2

(1 + u0xv=c
2)

(26)

3 Properties of Spatial and Temporal

Measurements

In this chapter we explore the properties of spatial and temporal measurements that
result from the two postulates of special relativity.
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3.1 Comparison of Meter Sticks and Clocks in Relative

Motion

3.1.1 Meter Sticks ? Motion

`0`

? ?

66

O0(S0)O(S)

By the �rst postulate the lengths ` = `0, since, if one were shorter , it might
be absolutely at rest and the other moving with respect to it, or at least they would
be distinguishable.

3.1.2 Clock Rates

Consider a clock made by counting reections between two parallel mirrors moving
perpendicularly.

v�t=2

c�t=2

~v-
>>>

B
B
B
B
B
B
BB

�
�
�
�
�
�
�
����� ���� ����

`0`

? ?

66

O0(S0)O(S)

For frame O:

�
c�t

2

�2
= `2 +

�
v�t

2

�2
(�t)2

�
c2 � v2

�
= 4`2

�t =
2`p
c2 � v2

=
2`

c

1q
1 � (v=c)2

(27)

For frame O0:

�t0 =
2`0

c
=

2`

c
(28)
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So one has

�t =
�t0q

1� (v=c)2
(29)

This is called Time Dilation. The time for frame O is greater than the time for O0,
so that an observer in frame O claims that frame O0's clocks are running more slowly.

This is termed Time dilation of a moving clock.
Comments:

(1) In Ether theory

�t = �t0 =
2`

c
q
1 � (v=c)2

Since both observers would agree on the actual path length through the Ether.
Same for Ether Theory with Lorentz contraction since there is no contraction

perpendicular to ~v.
(2) Emission Theory gives

�t = �t0 =
2`

c

(3) What does O0 say about the clocks in frame S?
O0 says clocks in S run slow. This is necessary but the �rst postulate; Do the

experiment the other way and remember that the systems cannot be distinguishable.
(4) Is all this consistent?

Observer O uses two clocks, O0 uses one! O0 blames O's \wrong result" on
O's clocks not being properly synchronized. (The second clock is set later.) Thus
the systems are not symmetrical and identical. O0 agrees with O as to all the clock
readings but explains this di�erently.
(5) Can the rate of a moving clock be tested experimentally?

Yes. The earliest good work was by Ives and Stilwell using \canal rays". (1928)
Doppler e�ect makes the result unless the observation is made perpendicular

to ~v or one uses the average of parallel and anti-parallel light. The latter approach is
better. They used Dempster's velocity selector.

� =
�0
�
1 � v

c

�
r
1 �

�
v
c

�2 (30)

The upper term represents the Doppler e�ect and the lower the time dilation.
Other early measurements include: Nereson and Rossi published in Physical

Review 64, 199 (1943) and the direct test with mesons by Neher and Stever published
in Physical Review 58, 756 (1940).

The height was chosen so that matter traversed was the same di�erence in rate
so decay of cosmic ray mesons in 12,000 feet.
(6) The nature of clocks: Clocks may be mechanical, electrical, chemical, radioactive,
biological, atomic, nuclear, etc.: All clocks obey the same law of time dilation.
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(7) How can one compare clocks in two di�erent systems?

&%
'$

� >��
��

��
��
&%
'$

Example, put one clock on a rotating wheel with velocity v and compare after

each revolution. The moving clock runs slow by the  = 1=
q
1� v2=c2 factor.

3.1.3 Meter Sticks jj Motion

v
-

Uleaves a0
` -� arrives at e0

e

C
C
C
C
C
C
C
CC

f back at a0bd

A
A
A
A
A
A
A
AA

a

*

`0� -

�
e0

Mirror-a0

S

S0 A
A
A
A
A
A
A
AA

S0 sends light signal to mirror and back, with time �t0 in distance 2`0.
�t0 = 2`0=c by second postulate.

By time dilation which is just established:

�t =
�t0q

1 � v2=c2
=

2`0

c
q
1� v2=c2

(31)

But from the second postulate directly

�t =
ae+ ed

c

ae = ` + be = `+ ae
v

c

ae(1� v

c
) = `

ae =
`

1 � v
c

de = `+ be� de = ` + ae
v

c
� [ae+ de]

v

c
= ` � de

v

c
;

de(1 +
v

c
) = `
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de =
`

1 + v
c

:

�t =
`

c

"
1

1 � v
c

+
1

1 + v
c

#

�t =
2`

c (1� v2=c2)

But

�t =
2`0

c
q
1� v2=c2

;

so the equation

` = `0
q
1 � v2=c2 (32)

give the Lorentz-Fitzgerald contraction.

3.1.4 Setting of Clocks

C02 C01

C

>��
��

S

v -

S0 >> ��
��

��
��

S notes the clock reading on C and on C01 when C01 passes C and the readings
on C and C02 when C02 passes C. By the �rst postulate, O and O0 agree on jvj.

t02 � t01 =
`0

v
; t2 � t1 =

`

v

with the same v.
But ` = `0

q
1� v2=c2 (just established) and

t2 � t1 =
t02 +�t02 � t01q

1� v2=c2

where the time �t02 was just established previously in which �t02 is the correction
made by O to the setting by O0 of clock C02 in order to get clock synchronization in
frame S0. (�t02 turns out to be negative; O �nds t02 to be ahead, and must subtract
j�t02j from its reading.)
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t02 +�t02 � t01q
1 � v2=c2

=
`

v
=
`0

v

q
1 � v2=c2

t02 � t01q
1 � v2=c2

+
�t02q

1 � v2=c2
=
`0

v

q
1� v2=c2

=
`0=vq

1 � v2=c2
+

�t02q
1 � v2=c2

=
`0

v

q
1� v2=c2

Solving for �t02 yields

�t02 =
`0

v

"�q
1� v2=c2

�2
� 1

#
= �`

0v

c2
:

O says clock C02 is set ahead by `0v=c2 in the time units used by O0.
The clock behind in space is ahead in time.

Now by the Second Postulate A new experiment:

2 1

`0 -�

C02 C01

C

>��
��

S

v -

S0 >> ��
��

��
��

S0 sends a beam of light from 1 to 2 and times how long it takes.

t02 � t01 = `0=c

What does O calculate?

t2 � t1 =
t02 + �t02 � t01q
1� v2=c2

remembering that time dilation is previously established. There is a new �t02 for this
experiment, the correction calculated by O for C 0

2.

t2 � t1 =
`

c+ v
=
`0
q
1� v2=c2

c+ v

making use of the established Lorentz contraction.
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t = `
c+v

ct+ vt = `

` -�

photon�

ctvt

- � ��
��

��
��

t02 +�t02 � t01q
1� v2=c2

==
`0
q
1� v2=c2

c+ v

�t02 =
`0
�q

1 � v2=c2
�2

c+ v
� (t02 � t01)

=
`0
�q

1� v2=c2
�2

c+ v
� `0

c

= `0
"
1� v2=c2

c+ v
� 1

c

#
= `0

c� v2=c2 � c� v

c(c+ v)

= �`
0v(1 + v=c)

c2(1 + v=c)
= �`

0v

c2

Which is exactly the same as deduced from the First Postulate. O says \Clock behind
in space is ahead in time."

3.1.5 Operational Explanation of Perceived Synchronization Defect

1) O0 synchronizes two identical clocks at the same place.
2) He carries one slowly to the rear; or both slowly away from each other and

they stay synchronized as he sees it.
3) O says that the rear clock moves ahead in time because it runs faster while

being moved back to its �nal position.
Rate of front clock � r01 and rate of rear clock � r02 as seen by O.

r01 = ro

q
1 � v2=c2

r02 = ro

q
1� (v ��v)2=c2

�r0 ' rof
h
1� (v � �v)2=(2c)

i
�
h
1� v2=(2c2)

i
g

= ro
h
1� v2=c2 + v�v=c2 � 1 + v2=c2

i
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�r0 = ro
v�v

c2

Distance moved is `0 = �V�t0 where �t0 is the time to move the clock.

�r0 = ro
v`0

c2�t0

�r0�t0 is he synchronization \error" which is �t0 = `0f=c2. The rear clock is ahead in
time.

CONCLUSION One must abandon the notion of simultaneity of time for
observers in relative motion.

4 The Lorentz Transformation

The Lorentz transformations are demanded and supported by experimental
observations. The Lorentz transformation equations can readily be derived from
length contraction and time dilation after taking a short detour to discuss clock
synchronization.

Consider two frames of reference: S, the laboratory frame and S0 a frame of
reference moving with velocity ~v in the x̂ direction as shown in the following �gure.

x0x
(t0,x0,y0,z0)
(t, x, y, z)eventv--

�
�
�	

�
�
�	

6

-

S
x

y

O

6

-
S0

x0

y0

O0

- v

Arrange things so that at t = 0 and t0 = 0 that the two origins O and O0

coincide.
Consider each reference system to a an actual lattice of meter sticks and clocks,

e.g. each reference system is �lled with these space and time measuring devices at
every point.

Get clocks in S to agree. Identical clocks set by sending out a light pulse from
origin O and also from the midpoint between any two clocks. Check times, reect
back to midpoint, if pulses arrive together, then clocks agree.

System S0 dos the same with his clocks.
We have for the space-time event in the �gure above

x = vt+ x0 �
q
1 � v2=c2 (33)

where the second term takes into account length contraction of a moving frame.
We can use our arguments about the transverse directions to show that they are
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unchanged and then have the spatial Lorentz transformations:

x0 =
1q

1 � v2=c2
(x� vt)

y0 = y

z0 = z

t0 = t
q
1� v2=c2 + synchronization e�ect (34)

4.1 Synchronizing Clocks in Moving Frame

Our approach to get our system of reference made of a grid of meter sticks and
synchronized clocks requires that we synchronized the clocks. An approach to
synchronizing the clocks is: bring the clock together, match their readings, then
move into place. Move them slowly and gently so as not to disturb their operation.

Consider the simple case of two clocks brought together at the origin of the
moving system S0. When they are together, from the laboratory frame S both

clocks read same time and are going slow by a factor
q
1� (v=c)2 as a result of

time dilation. Now very slowly and gently move one clock back (in negative x0-
direction; toward the laboratory system origin) a distance ` in elapsed time ` = �v � .

The clock at the origin has its rate slow by
q
1� v2=c2 relative to the laboratory

frame. Clock moving back in negative x0-direction has its rate slowed by the factorq
1� (v � �v)2=c2

fA =
q
1� v2=c2fo fB =

q
1� (v � �v)2=c2fo (35)

The di�erence in the clocks' rates is

fA � fB = fo

�q
1� v2=c2 �

q
1� (v � �v)2=c2

�

=
foq

1 � v2=c2

2
41� v2

c2
�
 
(1� v2

c2
)(1� (v � �v)2

c2

!1=2
3
5

=
foq

1 � v2=c2

2
41� v2

c2
�
 
(1� v2

c2
)(1� v2

c2
+
2�vv

c2
� �v2

c2
)

!1=2
3
5

= �fa
�v v=c2

1 � v2=c2
= �fo

�v v=c2q
1� v2=c2

(36)

If it takes a time � = `o=�v to separate the clocks, the time di�erence between
them is

�t =
fA � fB

fA
� =

�q
1 � v2=c2 �

q
1 � (v � �v)2=c2

�
�
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= � �v v=c2q
1 � v2=c2

� `o

�v
= � `0 v=c

2q
1 � v2=c2

= �`0v=c2 (37)

Note that the speed with which the clock moves drops out and the change in reading
is proportional only to the distance displaced and the velocity of the moving system.

Clocks get out of synchronization (phase) by an amount proportional to their
separation `o and v. If brought back together, the clocks will go into synchronization.
The clock that is farther behind in space is further ahead in time.

Note that in the frame S0 the di�erence in rate of time kept between the clock
at the origin and the one being moved back to its place is second order in v=c rather
than �rst order:

f 0B =
f 0Aq

1 � (�v)2=c2
' f 0A �

 
1� 1

2

v2

c2

!

So that by moving with a very, very slow velocity the integrated e�ect in the S0 frame
can be made arbitrarily small while the e�ect as observed in the S frame is always
�`0v=c2 independent of �v. That is because the e�ect in frame S is �rst order in �v=c
and integrated over time equals the displacement.

The �nal Lorentz transformations are:

t0 = t
q
1� v2=c2 � x0v

c2
= t

q
1 � v2=c2 � v2

c2
1q

1 � v2=c2
(x� vt)

=
1q

1 � v2=c2

�
t� vx

c2

�
= 

�
t� vx

c2

�
(38)

Notice for v << c get Galilean transforms and there is also a symmetry between
the transformation equations.

t0 = (t� vx=c2) t = (t0 + vx0=c2)
x0 = (x� vt) x = (x0 + vt0)

y0 = y y = y0

z0 = z z = z0

(39)

4.1.1 Remarks on Lorentz Transformation

History: Lorentz transformation was derived by Lorentz before Einstein's work.
Lorentz obtained them by considering invariance of Maxwell's Equations.

Signi�cance: They de�ne the mathematical speci�cation required to discus
a kinematic occurrence { a sequence of space-time events.

Agreement with First Postulate: If one does the inversion, one obtains
the same equations. Try replacing v by �v.

.....
Agreement with Second Postulate:
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In S, light is described by

 
dx

dt

!2
+

 
dy

dt

!2

+

 
dz

dt

!2

= c2 (40)

This is equivalent to
dx2 + dy2 + dz2 � c2dt2 = 0 (41)

Substitute in the Lorentz transformations

(dx0 + vdt0)2�q
1 � v2=c2

�2 + dy02 + dz02 � c2

�
dt0 + v

c
dx0
�2

�q
1 � v2=c2

�2

=
1�q

1 � v2=c2
�2
"
dx02 + 2vdx0dt0 + v2dt02 � v2

c2
dx02 � 2vdx0dt0 � c2dt02

#
+ dy02+ dz02

= dx02 + dy02 + dz02 � c2dt02 = 0

Group Property of Lorentz Transformations in a Line

Identity exists: v = 0
Inverse exists: v!�v
Transitive: S ! S0 ! S00 � S ! S00

Exhibit as an Exercise?
It is true that all Lorentz Transformations also form a group.

4.2 Composition of Velocities

In Galilean relativity one simply adds velocities when changing frames of reference.
Velocity composition is slightly more complicated in Special Relativity. We can
readily derive the velocity composition formulae from the Lorentz transformation.

dt =
dt0 + v

c2
dx0q

1� v2=c2
;

dt

dt0
=

1 + v
c2

dx0

dt0q
1 � v2=c2

=
1 + vux=c

2q
1� v2=c2

dt

dt0
=

1 + u0x
v
c2q

1 � v2=c2

ux =
dx

dt
=

dx0 + vdt0

dt0
q
1 � v2=c2

dt0

dt
=

dx0

dt0
+ vq

1� v2=c2

dt0

dt

ux =
u0x + vq
1 � v2=c2

q
1 � v2=c2

1 + u0xv

c2
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ux =
u0x + v

1 + u0xv

c2

(42)

uy =
dy

dt
=
dy0

dt
=
dy0

dt0
dt0

dt

uy = u0y

q
1 � v2=c2

1 + u0xv

c2

(43)

uz = u0z

q
1 � v2=c2

1 + u0xv

c2

(44)

These three equations are the Einstein Velocity Addition Law.
Velocities do not add like vectors!
There are other important quantities for which transformation equations are

needed. That is to say that they do not transform like vectors. Can work them out
as exercises, e.g. transformation of acceleration and force. We will discuss these more
later.

ax =
dux

dt
; a0x =

du0x
dt0

; etc:

Answers:

ax =

�
1� v2

c2

�3=2
h
1 + u0xv

c2

i3 a0x (45)

ay =

�
1� v2

c2

�
h
1 + u0xv

c2

i2a0y �
u0yv

c2

�
1� v2

c2

�
h
1 + u0xv

c2

i3 a0x (46)

az =

�
1 � v2

c2

�
h
1 + u0xv

c2

i2a0z �
u0zv

c2

�
1� v2

c2

�
h
1 + u0xv

c2

i3 a0x (47)

Note as hint that

q
1 � u2=c2 =

q
1 � (u0)2=c2

q
1� v2=c2

1 + u0xv

c2

and
u2 = u2x + u2y + u2z
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4.2.1 Transformation of the Lorentz Factor 

Now that we have the composition of velocities or Lorentz transformation of velocities,

we can �nd the transformation of the Lorentz Factor  and/or
q
1 � v2=c2.

First consider
q
1 � u2=c2 where u is the speed of the particle in frame S and

u0 is the speed of the particle in frame S0 and the frames have relative velocity V .

u2 = u2x + u2y + u2z =

 
u0x + V

1 + u0xV=c
2

!2

+

0
@u0y

q
1� V 2=c2

1 + u0xV=c
2

1
A
2

+

0
@u0z

q
1� V 2=c2

1 + u0xV=c
2

1
A
2

so that

1 � u2

c2
= 1 �

(u0x + V )2 +
�
u02y + u02z

�
(1� V 2=c2)

c2 (1 + u0xV=c
2)2

=
c2 + 2u0xV + u02x V

2=c2 � u02x � 2u0xV � V 2 �
�
u02y + u02z

�
(1 � V 2=c2)

c2 (1 + u0xV=c
2)2

=
c2 � V 2 �

�
u02x + u02y + u02z

�
(1� V 2=c2)

c2 (1 + u0xV=c
2)2

=
(1� V 2=c2) (1� u02)

(1 + u0xV=c2)
2

Taking the square root yields

q
1 � u2=c2 =

q
1 � V 2=c2

q
1� u02=c2

1 + u0xV=c
2

(48)

And since  = 1=
q
1 � u2=c2 we have

p =
�
1 + u0xV=c

2
�
f

0
p (49)

where p and 0p are the Lorentz  of the particle in the S and S0 frames, respectively,

and f = 1=
q
1� V 2=c2 is the Lorentz  of one frame relative to the other.

We will use these transformations again later.

4.2.2 Velocity of Light as Maximum

The velocity addition law indicates that the velocity of light is the maximum velocity
attainable by a material object. (Hence the origin of the t-shirt with Einstein in
policeman's cap saying Speed Limit: 186,000 miles/sec! It's not just a good idea; it's
the law.)
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The velocity addition law for motion in the x-direction is

ux =
u0x + v

1 + u0xv=c2

If v = u0x = c=2,

ux =
c=2 + c=2

1 + 1=4
=

4

5
c:

If v = u0x = c,

ux =
c+ c

1 + 1
= c!!

That is adding together two velocities that are very near the speed of light only gets
one closer to the speed of light; one cannot keep adding velocities and exceed the
speed of light.
Exercise: Show that if one has a particle moving at �c slower than c (u0 = (1 � �)c
in the frame S0 moving at speed v = (1 � �)c just less than the speed of light in the
same direction, the velocity observed in frame S is just a little less than c.
Solution: Once can use the composition of velocities formula

u =
v + u0x

1 + uxv=c2
=

(1� �+ 1� �)c

1 + (1� �)(1� �)
=

2 � �� �

2� �� � + ��
c =

c

1 + ��
2����

' (1 � ��=2)c

4.2.3 Velocity of a Causal Impulse

~u
Causal Impulse

-

E�ectCause
x2x1

~v -

S0S

vv

In Frame S: (From the point of view of observer O in frame S)

�t = t2 � t1 =
x2 � x1

u
; u =

x2 � x1

t2 � t1

In Frame S0: (From the point of view of observer O0 in frame S0)

�t0 = t02 � t01 =
1q

1 � v2=c2

�
t2 �

x2v

c2
� t1 +

x1v

c2

�

=
t2 � t1q
1 � v2=c2

�
1� v

c2

�
x2 � x1

t2 � t1

��
=

1 � uv=c2q
1� v2=c2

�t:
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Now, if the causal impulse velocity u is greater than c (the speed of light), one
can choose v to make �t0 negative! E�ect precedes cause! This is impossible, if we
are to keep causality, so the maximum velocity of a causal impulse is c.

This limit is for the group velocity in a medium wth normal disperson - group
velocity is the speed with which signals can be sent in that medium. Phase velocities
may have any value! In a medium with anomoulus dispersion the situation is more
complicated. Needless to say after some investigation, it will be found that the
information in the wave will travel at c or less and that the electromagnetic �eld
travels at speed c but the e�ects of the interaction with the medium and phases of
subsequent scattering/re-radiation can give nearly any group velocity if the phasing
is arranged properly.

4.2.4 Velocity of Light in a Moving Medium

S S0 moves with medium

medium ?6

Light
- ~v

-

u0 =
c

n
; n = index of refraction (50)

u =
u0 + v

1 + u0v=c2
=

c=n + v

1 + cv=(nc2)
'
�
c

n
+ v

��
1� v

nc

�
:

u ' c

n
+ v � c

n2
v

c
� v2

nc

u

c
' 1

n
+
v

c
� v

n2c
� 1

n

v2

c2
' 1

n
+
�
1 � 1

n2

�
v

c

u =
c

n
+
�
1 � 1

n2

�
v (51)

This is exactly Fresnel's drag coe�cient from 1818.
Note that the e�ect is a little more complicated when dispersion (index of

refraction n depends on wavelength/frequency) is taken into account because of the
Doppler shift (see next section). The speed cm of light in a moving medium is equal
to

cm =
c

n
+ kvm (52)

where vm is the speed of the medium and

k = 1� 1

n(�)2
� �

n(�)

dn(�)

d�
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4.2.5 Doppler E�ect

JJ



hh
h

-

�u
-

z

A stationary observer sees light from a distant source, e.g. a star, The observer
sees the light with period P

P = Po
(1� u=c)q
1� u2=c2

(53)

And wavelength �:

� = �o
(1� u=c)q
1� u2=c2

: (54)

One approach to this result is

� = �o
(1� u=c)q

(1� u=c)(1 + u=c)
=

vuut1 + u=c

1� u=c

Remember that �f = c or �=P = c.
For the Ether Theory:

� = �of
(1� u=c) for moving source

1= (1 + u=c) for moving observer

Where u is positive for approach.
The Special Relativity result is the geometric mean of these:

� = �0

vuut1� u=c

1 + u=c
(55)

4.2.6 Aberration of Starlight

First consider light coming from a star perpendicular to the direction of motion of
the telescope.
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Then consider more general directions.

�
�
�
��

~v-

�0
�

�
�
�
�
��

y0

x0

S0S

y

x

6

--

6

ux = �ccos� u0x = �ccos�0
uy = �csin� u0y = �csin�0

Now apply Einstein velocity addition:

u0x =
ux � v

1� uxv=c2

cos�0 =
cos� + v=c

1 + v
c
cos�

v0y = uy

q
1 � v2=c2

1 � uxv=c2

sin�0 = sin�

q
1� v2=c2

1 + v
c
cos�

It is easy to check that sin2�0 + cos2�0 = 1.
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In the simple case � = �=2 so cos� = 0,

cos�0 =
v

c

which is the Bradley result.
In the general case, use the trigometric identity

tan
�

2
=

sin�

1 + cos�

tan
�0

2
=

sin�0

1 + cos�0
= sin�

q
1� v2=c2�

1 + v
c
cos�

� h
1 + cos�+v=c

1+(v=c)cos�

i

tan
�0

2
=

vuut1� v=c

1 + v=c
tan

�

2
(56)

For outgoing rays, c!�c.

5 Einstein's Special Relativity

It is straight-forward to show that from Einstein's postulates one also obtains the
Lorentz transformations.
Two Postulates
1. No physical experiment (without reference to outside) can determine the absolute
speed of the frame of reference.
2. The speed of light is independent of the speed of the source (or observer).

Consider an expanding sphere of light

c2t2 � x2 + y2 + z2 = c2t02 � x02 � y02 � z02

viewed by two inertial frames of reference (S and S0) by observers O and O0 respectively
with origins coinciding { at t = t02 = 0, x = x02 = 0, y = y02 = 0, z = z02 = 0.

By simple argument one can see that lengths transverse to the direction of
motion must be unchanged only x and t will be modi�ed. One argument is the one
made before about considering two identical cylinders aligned with each other and
their axes parallel to the direction of motion ~v. If the dimension perpendicular to
the direction of motion changes, then one cylinder will grow or shrink relative to the
other and could pass through the other. If one then switches to the other frame, the
opposite should happen or one can determine the absolute velocity. One would be
able to tell which one went inside and which outside.

Or consider the earlier discussion of two meter sticks aligned perpendicular to
the direction of motion. When the two meter sticks pass by each other one can use
them to measure each other and tell which is longer and thus establish the absolute
velocity.
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Thus by symmetry and logic using postulate (1) we have

y = y0; z = z0

so that the equation of expanding light sphere reduces to

c2t2 = c2t02 � x02

If we accept the second postulate and assume coordinate transformations are
linear and homogeneous we have

x0 = Ax+Bt

t0 = Cx+Dt

Now consider special cases:
(1) O0 origin has x0 = 0, which implies x = �B

A
t. Since velocity of O0 relative to O is

v, so that v = �B
A
which yields B = �Av.

(2) The origin of O has x = 0, which gives x0 = Bt, t0 = Dt implying x0 = B
D
t or

B = �Dv.
Combining (1) and (2) yields D = A. The linear transformation simpli�es to

x0 = A (x� vt)

t0 = Cx+At

(3) Putting this back into the expanding light sphere formula

c2t2 = c2t02 � x02c2 [Cx+At]2 � [A (x� vt)]2

= c2C2x2 + 2c2CAxt+ c2A2t2 �A2x2 + 2A2vx�A2c2t2

= A2
�
1� v2=c2

�
c2t2 + 2c2A

�
C +

v

c2
A

�
xt�

�
A2 � c2C2

�
x2

We can conclude that A2 (1� v2=c2) = 1 or A = 1=
q
1 � v2=c2 and A2� c2C2 = 0 so

that

C = �vA=c2 = � v

c2
1q

1 � v2=c2

and thus

A2 � c2C2 =
1

1 � v2=c2
� v2

c2
1

1� v2=c2
= 1

This gives us the Lorentz transformation

t0 = (t� vx=c2) t = (t0 + vx0=c2)
x0 = (x� vt) x = (x0 + vt0)

y0 = y y = y0

z0 = z z = z0

(57)
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Thus we have the identical Lorentz transformations from simple logical
deduction. We can construct the full theory of Special Relativity by using these
postulates and a series of thought (\gendanken") experimental. This approach is quite
elegant and intellectually pleasing and makes a very nice and tight exposition and
thus coherent little books. However, here we are emphasizing both the experimental
basis and applications and the importance of understanding relativity frommore than
one point of view.

In the next section we rederive the Lorentz transformations using the
Minkowski geometrical view and the Poincare relativity principle (Einstein's postulate
(1) but with a wider implication).

6 Minkowski Space-Time

The Minkowski (1908-1909) geometrical interpretation of Special Relativity is quite
a technically powerful approach. The primary step is to assume that our world is
described by a 3+1 dimension space-time continuum. There are four dimensions
and space is Euclidean but the addition of time to be the fourth dimension makes
space pseudo-Euclidean because the metric which de�nes distance has a di�erent sign
between time and space: There are two possible signatures for the signs: �;�;�;�
yielding the two possible metric equations:
The proper time convention:

(cd� )2 = (cdt)2 � (dx)2 � (dy)2 � (dz)2 (58)

The proper distance convention:

(ds)2 = � (cdt)2 + (dx)2 + (dy)2 + (dz)2 (59)

For most of this course and notes I use the proper time (�rst) convention since
it has a positive value for the physical objects we consider.

Note that such a space is intrinsically di�erent from a 4-D space with signature
+;+;+;+. It is conceptually confusing to smooth this over by replacing ct by ict or
just i� = x4. Even if this is done for the stated reason that most people know the
sine and cosine better than sinh and cosh.

6.1 Comments on 4-D Geometry for S.R.

The Minkowski metric and 4-D geometry makes quite an impact on how one can
approach problems in Special Relativity.
Importance
1) Assists in developing the needed space-time intuitions
2) Avoids always singling out a particular axis (x k vrelative).
3) 4-D language is suggestive and seldom misleading. e.g. ict is avoided! and it is
more likely to account for all coordinates in appropriate frame.
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4) 4-D vectors and invariants are powerful tools.
5) Is an essential approach of geometrical General Relativity.

With 4 axes one needs 4 numbers to specify an \event" in space-time. But
directions are not equivalent. A meter stick can be rotated to measure y or z instead
of x, but it cannot be rotated into a clock.

6.2 Invariant Interval

The (Minkowski) geometry of space-time is constructed so that the interval: dx2 +
dy2 + dz2 � c2dt2 is invariant under a Lorentz transformation. And the signature is
invariant under all real transformations of coordinates.

In more general form the signature is written as a bilinear transformation or
a matrix:

(ds)2 =
X
��

��� (dx�) (dx�) (60)

where the Minkowski metric term ��� can be expressly written as

��� =

2
6664
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

3
7775 (61)

Because the determinant of the signature is not equal to one but is -1, there
are three di�erent kinds of intervals:
(1) Space-like: Two space-time events separated such that

�x2 +�y2 +�z2>c2�t2

�s2>0 �� 2<0 (62)

One can always �nd a Lorentz transformation to proper coordinates in which �t2 = 0.
That means that one can �nd an inertial coordinate system in which two events which
have a space-like interval happen simultaneously.
(2) Time-like: In this case events are separated such that �� 2>0 (or �s2<0) because
c2�t2>�x2 + �y2 + �z2. One can always �nd a Lorentz transformation to proper
coordinates in which �x2 +�y2 +�z2 = 0
(3) Singular: In this case events separated such that �s2 = �� 2 = 0 These events lie
on the light cone, such as a light ray in vacuum.

The result is that space-like intervals can always be measured with a meter
stick and time-like with a clock.

6.3 What leaves �s
2 invariant?

(1) Moving origin in space. (translation in space) E.g.

x0 = x+ xo
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y0 = y

z0 = z

t0 = t (63)

(2) Re-setting zero time (translation in time) x, y, z remain the same and t0 = t+ to.
(3) Rotation of spatial axes, E.g.

x0 = xcos� + ysin�

y0 = �xsin�+ ycos�

z0 = z

t0 = t (64)

(4) Lorentz Transformation:

x0 =  (x� vt)
y0 = y

z0 = z

t0 = 
�
t� xv=c2

�
(65)

Which is equivalent to

x0 = xcosh(�) + ctsinh(�)
y0 = y

z0 = z

ct0 = �xsinh(�) + ctcosh(�) (66)

where cosh(�) =  � 1=
q
1� v2=c2.

This is a Lorentz rotation of axes. It can be considered an imaginary rotation
in the x� t plane. Remember the hyperbolic trigonometry identity/de�nition.

cosh2(�)� sinh2(�) = 1

Consider cosh(�) = cosh(i�); isinh(�) = sin(i�) which gives

x0 = xcos(i�) + ictsinh(�)
y0 = y

z0 = z

ict0 = �xsin(i�) + ictcos(i�) (67)

Consider a space-like interval

jdxj>jcdtj

Then dx0 =  (dx� vdt) ; cdt0 = 
�
cdt� v

c
dx
�
and one can always �nd a value of

v=c with jv=cj<1 for which cdt0 = 0. Its magnitude is jv=cj = jcdt=dxj<1. A similar
argument works for time-like intervals.
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In the following picture, OQ is time-like, OS is space-like, and OR is singular.

ct

S
R

Q
P

� �
Past LIght Cone

,
,
,

,
,

,
,
,

,
,

,
,

,
,

,
,,

S
S
S
S
S
S
S
S
S
S
S
S
S
S
SS

� �Forward Light Cone

ss
s s
world line of a free particle

�
�
�
�
�
�
�
�
�
��

z

x��������

-

6

By a Lorentz transformation we may:
(1) Move Q to the t0 axis.
or
(2) Move S to the x0 axis.

But R will always be on a line of slope 1 in any S0

Q may be on the particle's world line, then we may �nd a frame in which x0

stays zero, which is called the rest frame of the particle. In this frame clocks at rest

measure the particle's proper time, d� . In other frames dt = d�=
q
1 � v2=c2 =  d� .

OQ may be a meter stick. One can �nd S0 so that it lies on the x0 axis and x0 = 0.
Consider particles to be pieces of the stick. They are laid out in S0 to measure

proper length �. For other frames, `0 = �
q
1� v2=c2 = �=. with the x direction of

v and stick on the x axis.
For particles not free, that is with forces on them, we have the

instantaneous rest frame.

6.4 Derivation of Lorentz Transformations

The Lorentz transformations result automatically from the metric and the assumption
that in all inertial systems proper distances or times are invariants. That is any
observer in any inertial system will calculate the same proper distance between two
space-time events.

We start with two postulates:
(1) Poincare' Relativity: The Laws of Physics are the same in all inertial frames.
(2) Minkowski Geometry/Metric Space-time is a continuum in 3+1 dimensions
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with metric
(cd� )2 = �(ds)2 = (cdt)2 � (dx)2 � (dy)2 � (dz)2

where � is the proper time and s is the proper distance. Proper time is invariant for
all inertial systems.

Immediately we get time dilation

(cd� )2 = (dt)2

2
4c2 �

 
dx

dt

!2

�
 
dy

dt

!2

�
 
dz

dt

!2
3
5

(d� )2 = (dt)2
"
1 � v2x

c2
�
v2y

c2
� v2z
c2

#
= (dt)2

"
1� v2

c2

#

d� = dt
q
1 � v2=c2

If proper time is invariant,the we can show Lorentz transformation is linear.

(c�� )2 = (c�t)2� (�x)2 � (�y)2 � (�z)2

= (�x0)2 � (�x1)2 � (�x2)2 � (�x3)2

the second equation de�nes a numbering system for coordinates. But this same sum
in the primed coordinate system must give the same proper time.

= (c�t0)2 � (�x0)2 � (�y0)2 � (�z0)2

The conversion from one coordinate system to another

dx0� =
X
�

@x0�
@x�

dx� �
@x0�
@x�

dx�

where the second right hand side de�nes the Einstein summation convention that a
repeated index (in this case �) mean summation on that index. The Greek symbol
index sums over four (4-D) going 0, 1, 2, 3 and Roman letters sum over three spatial
coordinates going 1, 2, 3.

c2d� 2 =
X
�

dx2� =
X
�

X
�

@x0�
@x�

@x0�
@x�

dx�dx�

=
X
�

dx2� =
X
�

X
�

���dx�dx�

Therefore
@x0�
@x�

@x0�
@x�

= ���

implying if one takes the derivative: @
@x�

one �nds

@2x0�
@x�@x�

@x0�
@x�

+
@x0�
@x�

@2x0�
@x�@x�

= 0
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Now one can then shift through the indices: �! � ! � ! � and get generically

@2x0

@x@x

@x0

@x
= 0

and the determinant of @x0=@x = �1 which implies

@2x0

@x@x
= 0

and
x0� = A� +

X
�

A��x�

Which shows that the coordinate (Lorentz transformation) must be linear to preserve
invariant the proper distance and time. Thus

dx0� =
X
�

A��x�

and X
�

A��A�� = ���

The solution to these equations is

A =

2
6664
cosh �sinh 0 0
�sinh cosh 0 0

0 0 1 0
0 0 0 1

3
7775

or equivalently

[ct0; x0; y0; z0; ] =

2
6664

 �v=c 0 0
�v=c  0 0

0 0 1 0
0 0 0 1

3
7775
0
BBB@
ct

x

y

z

1
CCCA
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7 Lorentz Transformations

The Lorentz transformations may be obtained in one of several ways which includes
(1) �tting to experimental observations, (2) using the two postulates of special
relativity, or (3) assuming Minkowski (4-dimensional) space and �nding what are
the transformations that leave 4-D vectors lengths invariant.

History: Lorentz transformation was derived by Lorentz before Einstein's
work. Lorentz obtained them by considering invariance of Maxwell's Equations and
the Michelson and Morely experimental results.

Signi�cance: The Lorentz Transformations de�ne the mathematical
speci�cation required to discuss a kinematic occurrence { a sequence of space-time
events.

7.1 Experimental Lorentz Transformation Derivation

The Lorentz transformations are demanded and supported by experimental
observations. The Lorentz transformation equations can readily be derived from
length contraction and time dilation after taking a short detour to discuss clock
synchronization.

Consider two frames of reference: S, the laboratory frame and S0 a frame of
reference moving with velocity ~v in the x̂ direction as shown in the following �gure.

x0x
(t0,x0,y0,z0)
(t, x, y, z)eventv--

�
�
�	

�
�
�	

6

-

S
x

y

O

6

-
S0

x0

y0

O0

- v

Arrange things so that at t = 0 and t0 = 0 that the two origins O and O0

coincide.
Consider each reference system to be an actual lattice of meter sticks and

clocks, e.g. each reference system is �lled with these space and time measuring
devices at every point.

Get clocks in S to agree. Identical clocks set by sending out a light pulse from
origin O and also from the midpoint between any two clocks. Check times, reect
back to midpoint, if pulses arrive together, then clocks agree.

System S0 does the same with his clocks.
We have for the space-time event in the �gure above

x = vt+ x0 �
q
1 � v2=c2 (68)
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where the second term takes into account length contraction of a moving frame.
We can use our arguments about the transverse directions to show that they are
unchanged and then have the spatial Lorentz transformations:

x0 =
1q

1 � v2=c2
(x� vt)

y0 = y

z0 = z

t0 = t
q
1� v2=c2 + synchronization e�ect (69)

7.1.1 Synchronizing Clocks in Moving Frame

Our approach to get our system of reference made of a grid of meter sticks and
synchronized clocks requires that we synchronized the clocks. An approach to
synchronizing the clocks is: bring the clock together, match their readings, then
move into place. Move them slowly and gently so as not to disturb their operation.

Consider the simple case of two clocks brought together at the origin of the
moving system S0. When they are together, from the laboratory frame S both

clocks read same time and are going slow by a factor
q
1� (v=c)2 as a result of

time dilation. Now very slowly and gently move one clock back (in negative x0-
direction; toward the laboratory system origin) a distance ` in elapsed time ` = �v � .

The clock at the origin has its rate slow by
q
1� v2=c2 relative to the laboratory

frame. Clock moving back in negative x0-direction has its rate slowed by the factorq
1� (v � �v)2=c2

fA =
q
1� v2=c2fo fB =

q
1� (v � �v)2=c2fo (70)

The di�erence in the clocks' rates is

fA � fB = fo

�q
1� v2=c2 �

q
1� (v � �v)2=c2

�

=
foq

1 � v2=c2

2
41� v2

c2
�
 
(1� v2

c2
)(1� (v � �v)2

c2

!1=2
3
5

=
foq

1 � v2=c2

2
41� v2

c2
�
 
(1� v2

c2
)(1� v2

c2
+
2�vv

c2
� �v2

c2
)

!1=2
3
5

= �fa
�v v=c2

1 � v2=c2
= �fo

�v v=c2q
1� v2=c2

(71)

If it takes a time � = `o=�v to separate the clocks, the time di�erence between
them is

�t =
fA � fB

fA
� =

�q
1 � v2=c2 �

q
1 � (v � �v)2=c2

�
�
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= � �v v=c2q
1 � v2=c2

� `o

�v
= � `0 v=c

2q
1 � v2=c2

= �`0v=c2 (72)

Note that the speed with which the clock moves drops out and the change in reading
is proportional only to the distance displaced and the velocity of the moving system.

Clocks get out of synchronization (phase) by an amount proportional to their
separation `o and v. If brought back together, the clocks will go into synchronization.
The clock that is farther behind in space is further ahead in time.

Note that in the frame S0 the di�erence in rate of time kept between the clock
at the origin and the one being moved back to its place is second order in v=c rather
than �rst order:

f 0B =
f 0Aq

1 � (�v)2=c2
' f 0A �

 
1� 1

2

v2

c2

!

So that by moving with a very, very slow velocity the integrated e�ect in the S0 frame
can be made arbitrarily small while the e�ect as observed in the S frame is always
�`0v=c2 independent of �v. That is because the e�ect in frame S is �rst order in �v=c
and integrated over time equals the displacement.

The �nal Lorentz transformations are:

t0 = t
q
1� v2=c2 � x0v

c2
= t

q
1 � v2=c2 � v2

c2
1q

1 � v2=c2
(x� vt)

=
1q

1 � v2=c2

�
t� vx

c2

�
= 

�
t� vx

c2

�
(73)

Notice for v << c get Galilean transforms and there is also a symmetry between
the transformation equations.

t0 = (t� vx=c2) t = (t0 + vx0=c2)
x0 = (x� vt) x = (x0 + vt0)

y0 = y y = y0

z0 = z z = z0

(74)

7.2 Postulate Lorentz Transformation Derivation

We want to consider the transformation from one inertial coordinate frame S with
coordinates (ct; x; y; z) more generally (x0; x1; x2; x3) to another inertial coordinate
frame S0 with coordinates (ct0; x0; y0; z0) more generally (x00; x

0
1; x

0
2; x

0
3)

First we establish that the transformation must be linear. This can be shown
many ways - for example, from Newton's �rst law and the idea of temporal and
spatial homogeneity: An ideal standard clock is one that runs at a constant rate,
e.g. ticking o� a second at a �xed interval independent of the absolute time. We
would like for its rate not to depend its position in space or time as an indication
of spatial and temporal homogeneity. Consider a standard clock C moving through
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frame S, its motion being given by xi = xi(t), where xi (i = 1; 2; 3) stand for the
three spatial coordinates (x; y; z). Then dxi=dt = constant. If � is the time indicated
by the clock C itself, homogeneity requires the constancy of dt=d� . Equal outcomes
here and there, now and later, of the experiment that consists of timing the ticks of
a standard clock moving at constant speed.

Together these results imply dx�=d� = constant and thus d2x�=d� 2 = 0, where
we have written x� (� = 0; 1; 2; 3) for ct; x; y; z). In frame S0 the same argument yields
d2x0�=d�

2 = 0. We also have

dx0�
d�

=
X
�

@x0�
@x�

dx�

d�
;

d2x�

d� 2
=
X
�

@x0�
@x�

d2x�

d� 2
+
X
�

X
�

@2x0�
@x�@x�

dx�

d�

dx�

d�
: (75)

Thus for any free motion of such a clock the last term in the equation must vanish.
This can only happen if @2x0�=@x�@x� = 0: that is, if the transformation is linear.

An immediate consequence of linearity is that all the de�ning particles (that
is, those at rest in the lattice) of any inertial S0 move with identical, constant velocity
through any other inertial frame S. Suppose that the coordinates of S and S0 are
related by

x� =

 X
�

A��x
0
�

!
+B� (76)

Then setting x0i = constant (i = 1; 2; 3) for a particle �xed in S0, we get dt = A00dt
0,

dxj = Aj0dt
0, and thus dxj=dt = Ai0=A00 = constant, as asserted. The de�ning

particles of S0 thus constitute, as judged in S, a rigid lattice whose motion is fully
determined by the velocity of any one of its particles.

Another consequence of linearity (plus symmetry) is that the standard
coordinates in two arbitrary inertial frames S and S0 can always be chosen so as
to be in standard con�guration with respect to each other.

It is always possible to chose the line of motion of the spatial origin of S0 as
the x-axis of S, and to choose the zero points of time in S and S0 so that they two
origin clocks both read zero when they pass each other. Any two orthogonal planes
intersecting along the x-axis can serve as the coordinate planes y = 0 and z = 0 of S.
The two planes, �xed in S, plus the moving plane x = vt (v being the velocity ofS0

relative to S) correspond to plane sets of particles �xed in S0. Moreover, the planes
y = 0 and z = 0 must also be regarded as orthogonal in S0, otherwise the isotropy
of S ( in particular, its axial symmetry about the x-axis) would be violated. So we
can takes these planes as the coordinate planes y0 = 0 and z0 = 0, respectively of S0,
otherwise the projection of that axis onto that plane would violate the isotropy of S.
Hence we can take x = vt as x0 = 0. In what follows, we assume S and S0 to be in
standard con�guration.

The Relativity Postulate implies that the transformation between any pair of
inertial frames in standard con�guration, with the same v, must be the same. Suppose
we reverse the x- and z- axes of both S and S0, by symmetry and reciprocity, this
operation produces an identical pair of inertial frames with the roles of the `�rst' and
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`second' interchanged. So if we then interchange primed and unprimed coordinates,
the transformation equations must be unchanged. In other words, the transformation
must be invariant under what we shall call an xz reversal:

x$ �x0; y$ y0; z $ �z0; t$ t0 (77)

The same is true for an xy reversal.
Now by linearity, y0 = Ax + By + Cz + Dt + E, where the coe�cients are

constants, with some dependence on v. Since, by our choice of coordinates, y = 0,
must entail y0 = 0, we have y0 = By. Applying an xz reversal yields y = By0

and so B = �1. However when v ! 0 one must continuously go to the identity
transformation and to y0 = y and thus the only choice is B = 1. The argument for z
and z0 is similar, and we arrive at the `trivial' members of the transformation:

y0 = y; x0 = z (78)

just as in the Galilean/Newtonian case and for the same reasons.
Next suppose linearity so x0 = x+Fy+Gz +Ht+ J , where for tradition we

have used  as the coe�cient for x. By our choice of coordinates, x = vt must imply
x0 = 0, so that v +H; F; G; J all vanish and

x0 =  (x� vt) =  (x� �ct) (79)

An xz reversal then yields

x =  (x0 + vt0) =  (x0 + �ct0) (80)

At this stage Newton's axiom t0 = t would lead to  = 1 and x0 = x� vt; that
is, to the Galilean transform. Instead we make the real use of Einstein's law of light
propagation - the second postulate of Special Relativity. According to it, x = ct and
x0 = ct0. Both frames S and S0 have the speed of light as c and the two equations
are simply descriptions of the same light signal in each reference frame. Substituting
these expressions back into the transformation equations for x0 and x we �nd the
relations ct0 = t(c� v) and ct = t0(c+ v), whose product divided by tt0, yields

 =
1q

1� v2=c2
(81)

since v ! 0 must lead to x0 = x continuously, we must chose the positive root. This is
the famous `Lorentz factor' gamma (), which plays such an important role in Special
Relativity. Previously it was found to satisfy experiment. Here it appears to satisfy
the second postulate of the speed light being the same �nite value in all inertial
frames and in the context of the relativity postulate.

The elimination of the cross reference frame coordinate, e.g. x0, �nally leads
to the most revolutionary of the four equations

t0 = 
�
t� vx=c2

�
(82)
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Since in the above derivation we have used Einstein's light propagation
postulate only on the x-axis, must still check whether the transformations respects
it generality. First, the linearity of the transformation implies that any uniformly
moving point transforms into an uniformlymoving point. This, incidently recovers the
invariance of Newton's �rst law, but, of course, it also applies to light signals. Next,
one easily derives from the transformations the enormously important fundamental
identity

c2dt02 � dx02 � dy02 � dz02 = c2dt� dx2 � dy2 � dz2 (83)

The distance dr between neighboring points in a Euclidean frame S is given by the
`Euclidean' metric

cr2 = dx2 + dy2 + dz2 (84)

From the identity we have dr2 = c2dt2, which is characteristic of any e�ect traveling
at the speed of light, implies that dr02 = c2dt02 and vice versa. So the Euclidicity of
the metric and the invariance of the speed of light are jointly respected by the Lorentz
transform.

7.3 Minkowski SpaceTime Derivation

The (Minkowski) geometry of space-time is constructed so that the interval: dx2 +
dy2 + dz2 � c2dt2 is invariant under a Lorentz transformation. And the signature is
invariant under all real transformations of coordinates.

In more general form the signature is written as a bilinear transformation or
a matrix:

(ds)2 =
X
��

��� (dx�) (dx�) (85)

where the Minkowski metric term ��� can be expressly written as

��� =

2
6664
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

3
7775 (86)

for Euclidean (pseudo-Euclidean because of sign di�erence) coordinates.
We consider that inertial coordinate systems are those for which the four-

dimensional length de�ned by the metric is invariant. Immediately, this gives us time
dilation:

(cd� )2 = �(ds)2 = (cdt)2 � (dx)2 � (dy)2 � (dz)2

= (dt)2

2
4c2 �

 
dx

dt

!2

�
 
dy

dt

!2

�
 
dz

dt

!2
3
5

= (cdt)2
"
1 � v2

c2

#
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d� = dt
q
1� v2=c2 (87)

Thus we see immediately that the rest frame elapsed (rate) time � will be dilated by

the factor
q
1 � v2=c2.

If proper time is invariant, then we can show Lorentz transformation is linear.
The conversion from one coordinate system to another

dx0� =
X
�

@x0�
@x�

dx� �
@x0�
@x�

dx�

where the second right hand side de�nes the Einstein summation convention that a
repeated index (in this case �) mean summation on that index. The Greek symbol
index sums over four (4-D) going 0, 1, 2, 3 and Roman letters sum over three spatial
coordinates going 1, 2, 3.

c2d� 2 =
X
�

(dx0�)
2 =

X
�

X
�

X
�

@x0�
@x�

@x0�
@x�

dx�dx�

=
X
�

dx2� =
X
�

X
�

X
�

������dx�dx� (88)

Therefore X
�

@x0�
@x�

@x0�
@x�

=
X
�

������ (89)

implying if one takes the derivative: @
@x�

one �nds

@2x0�
@x�@x�

@x0�
@x�

+
@x0�
@x�

@2x0�
@x�@x�

= 0

Now one can then shift through the indices: �! � ! � ! � and get generically

@2x0

@x@x

@x0

@x
= 0

and the determinant of @x0=@x = �1 which implies

@2x0

@x@x
= 0

and
x0� = A� +

X
�

A��x�

Which shows that the coordinate (Lorentz transformation) must be linear to preserve
invariant the proper distance and time. Thus

dx0� =
X
�

A��dx�
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and X
�

A��A�� = ���

The solution to these equations is

A =

2
6664
cosh �sinh 0 0
�sinh cosh 0 0

0 0 1 0
0 0 0 1

3
7775

or equivalently

[ct0; x0; y0; z0; ] =

2
6664

 �v=c 0 0
�v=c  0 0

0 0 1 0
0 0 0 1

3
7775
0
BBB@
ct

x

y

z

1
CCCA

The Lorentz transformation can be derived as the transformations that are
velocity boosts from one inertial frame to another.

7.3.1 ict Derivation of L.T.

In this subsection we derive the Lorentz transformation the way that undergraduates
were often introduced to the subject and this shows an alternate coordinate de�nition.
First consider four dimensional Euclidean space with coordinates (x1; x2; x3; x4) which
in Cartesian coordinates are x; y; z; ict). Then the length of a vector with one end
on the origin and the other at point P = (x1; x2; x3; x4) is given by the Pythorean
(Euclidean/Cartesian) metric De�ne x4 = T � ict, then

d2 =
X
�=1;4

x2�

= x2 + y2 + z2 + T 2

= x2 + y2 + z2 + (ict)2

= x2 + y2 + z2 � (ct)2 (90)

Thus the distance squared is just the same as before but with the opposite sign. If
we want to consider all the transformations that leave the four-D distance invariant:

d2 = (d0)2

x2 + y2 + z2 � (ct)2 = (x0)2 + (y0)2 + (z0)2 � (ct0)2 (91)

The most general linear transformation for a Euclidean space (excluding translations)
that leave vector lengths invariant is a simple rotation.

x0 = xcos�+ Tsin�

T 0 = �xsin�+ Tcos� (92)
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Consider the point(s) x0 = 0. By de�nition of the relationship between the reference
systems x = vt = vT=(ic) for same point. The rotation angle is then

tan� = i
v

c
� i� (93)

Thus � is an imaginary angle (tan� = iv=c! �� = v=c).

cos� = 1=sec� = 1=(1 + tan2�)1=2 =
1q

1� v2=c2
�  (94)

sin� = tan�� cos� = i
v

c
 = i� (95)

Putting these into the rotation equations above

x0 = xcos� + Tsin� = x+ T i� = (x� vt)
T 0 = �xsin�+ Tcos� = �xi� + T = (T � i�x)
ct = (ct� �x) (96)

7.4 General Lorentz transformations: the Lorentz group

One can explicitly verify that the Lorentz transformation

ct0 = (ct� �x) t0 = (t� vx=c2)
x0 = (x� �ct) x0 = (x� vt)
y0 = y

z0 = z (97)

where � = v=c and  = 1=
p
1� �2, leaves the space-time interval ds = (cd� )

invariant. By choosing space coordinates so that the relative velocity of two inertial
frames is along the x direction, it follows that all Lorentz transformations leave the
interval invariant.

We can explicitly write this out as a matrix equation:

ds2 = ���dx
�dx� �

X
�

X
�

���dx
�dx� (98)

where a repeated index means a summation in the Einstein convention.
Speci�cally, in Cartesian coordinates

ds2 = [cdt dx dy dz]

2
6664
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

3
7775
2
6664
cdt

dx

dy

dz

3
7775 = c2dt2 � dx2 � dy2 � dz2 (99)
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The Lorentz transformation in matrix notation for Cartesian coordinates is

��
� =

2
6664

 �� 0 0
��  0 0
0 0 1 0
0 0 0 1

3
7775 (100)

Since2
6664

 �� 0 0
��  0 0
0 0 1 0
0 0 0 1

3
7775
2
6664
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

3
7775
2
6664

 �� 0 0
��  0 0
0 0 1 0
0 0 0 1

3
7775 =

2
6664
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

3
7775

(101)
it is clear that the Lorentz transformation leaves the interval (ds0)2 = ds2 invariant.

Now we can de�ne the Lorentz group as the group of matrix transformations
that leave the interval ds invariant.

(ds0)2 = ����
�
��

�
�dx

�dx� != ds2 (102)

But ds2 may be written as: ds2 = ���dx
�dx� thus we may infer that

����
�
��

�
� = ��� (103)

Hence, any matrix � which leaves the metric invariant under the
transformation represents a Lorentz transformation. These matrices form a group
of transformations known as the Lorentz group. When combined with translation
symmetry, x� ! (x0)� = x� + ��, with �� as the components of a constant 4-vector,
it forms a larger group known as the Poincare group.

7.5 Lorentz Group

In Mathematics the Lorentz Group is the the group of all linear transformations of
the vector space R4 that leave the quadratic form �x20+ x21 + x22+ x23 invariant. The
Lorentz group is isomorphic to O(1,3,R), a real form of the complex orthogonal group
O(4).

8 Thomas Precession

Thomas Precession is a kinematic e�ect discovered by L. T. Thomas in 1926 (L.
T. Thomas Phil. Mag. 3, 1 (1927)). It is fairly subtle and mathematically
sophisticated but it has great importance in atomic physics in connection with spin-
orbit interaction. Without including Thomas Precession, the rate of spin precession
of an atomic electron is o� by a factor of 2. Later we will see that there is a similar
e�ect for gravitational �elds.
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The e�ect is connected with the fact that two successive Lorentz
transformations in di�erent directions are equivalent to a Lorentz transformation plus
a three dimensional rotation. This rotation of the local frame of rest is the kinematic
e�ect that causes the Thomas precession.

For the lecture we will not do the full mathematical treatment, since it is
rather involved. Instead we will show by a simple example how the rotation and thus
precession comes about.

Make two successive Lorentz transformations in orthogonal directions: from S
to S0 with velocity v along the x axis, followed by a transformation from S0 to S00 with
velocity v0 along the y0 axis, as shown by the following diagram.

�00

�
�
�
�>

��
�
�
�
�
�
�
�
�
�
�
�
��>
O00

S00

y00

x0
0

v0

v

6

-

-

6

O0

y0

x0
S0

-

6

O

y

x

S

-

6

The line from the origin O of S to the origin O00 of S00 making and angle � in
S and an angle �00 in S00. We can calculate the angles in the two frames by applying
the Lorentz transformations and evaluating them in each frame.

x0 = (x� vt) x = (x0 + vt0)
t0 = (t� vx=c2) t = (t0 + vx0=c2)

y0 = y y = y0

y00 = 0(y0 � v0t0) y0 = 0(y00 + vt00)
x00 = x0 x0 = x00

where
 = 1=

q
1 � v2=c2 0 = 1=

q
1 � (v0=c)2

(104)

Combing these equations one �nds:

y00 = 0[y � v0(x� vt)]
x00 = (x� vt) (105)

Now we can calculate the angle � made by the line between origins. For a
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Galilean transform one would have

tan� =
y

x
=
v0t

vt
=
v0

v
(106)

but Special Relativity shows us that 3-D velocities do not transform like 3-D vectors.
So we must calculate carefully.

tan� =
y

x
=
y0

vt
=
0(y00 + v0t00)

vt
jy00=0 =

0v0t00

vt
(107)

t = (t0 + vx0=c2)jx00=x0=0 = 0(t00 + v0y00=c2)jy00=0 = 0t00 (108)

so that

tan� =
0v0t00

v0t00
=

v0

v
(109)

Note that this answer is very near the Galilean result but with the factor of
1/ which reminds us of aberration.

Now we calculate �00:

tan�00 =
y00

x00
=
0[y0 � v0t0]

x0
(110)

where x00 and y00 are the coordinates of the origin O of system S in the S00 system.
Thus

tan�00 =
0[y � v0]

x0
jy=0 = �

0v0t0

x0
= � 0v0t0

(x� vt)
jx=0 =

�0v0t0
�vt (111)

t0 = (t� vx=c2)jx=0 = t; (112)

tan�00 =
0v0

v
(113)

This looks again similar to the Galilean angle except for the extra factor of 0.
Now consider a particle on a curved path

�v
6

y

xXX ��  

�

C
C
C
C
C
C
C
C
C
CCW?

At a certain time it is at the origin O of our system S. Put the x axis parallel
to the path, and y axis toward the center of curvature. At t = 0, the rest frame S0 is
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moving in the x direction with velocity v. At a slightly later time its rest frame S00 is
moving perpendicular to x0 in the y direction with velocity v0 = �v.

De�ne

�� = �00 � � = tan�1
 
v00

v

!
� tan�1

 
v0

v

!
(114)

For a very short time interval the motion is circular. That is �t the local curve with
a tangent circle with appropriate radius of curvature.

vx = !Rcos� vy = !Rsin�

vx = v vy = �v = v0
(115)

so

tan� =
v0

v

�� = �00 � � = tan�1 (0tan�)� tan�1
 
tan�



!
(116)

Choose � to be very small;

� =
�S

R
=
v�t

R

Then

�� � v�t

R

 
0 � 1



!
(117)

!T =
��

�t
� v

R

 
0 � 1



!

In a circle the acceleration is

a =
v2

R
so that

v

R
=
a

v

giving

!T =
a

v

 
0 � 1



!

Suppose we are in a non-relativistic region v << c, like an electron in an atom:

0 � 1


=

1q
1� (v0=c)2

�
q
1� (v=c)2 � 1 +

1

2
(
v0

c
)2 � 1 +

1

2
(
v

c
)2 � 1

2
(
v

c
)2

since tan� = v0=v << 1. Putting this back into the expression for !T

!T �
a

v

v2

2c2
=
va

2c2
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Thus �00 > �, thus a counter-clockwise rotation, implying

~!T =
~v�~a
2c2

(118)

The rigorous result is

~!T =
2

 + 1

~v�~a
2c2

(119)

9 Spin-Orbit Interaction of Electron with

Nucleus in an Atom

Now we are set to apply this kinematic e�ect to spin precession in an atom. In its
own rest frame the electron \sees" the nucleus ying by.

The electron's magnetic moment, ~�, and spin angular momentum, ~S, are
related by

~� =
e

mcc
~S (120)

The torque on the magnetic moment is

~� =
d~S

dt
= ~��~B0 (121)

where ~B0 is the magnetic �eld in the e� frame.

~B0 = 

 
~B � ~ve

c
�~E

!
(122)

Where ~B is the magnetic �eld and ~E is the electric �eld in the nucleus rest frame.
v=c << 1 so that  � 1,

d~S

dt
= ~��

 
~B � ~ve

c
� ~E

!
(123)

arises from the interaction energy

U 0 = �~� �
 
~B � ~ve

c
�~E

!
(124)

If ~E is due to a spherically symmetrical charge distribution { as for a one-
electron atom or one outside a closed shell { then

e ~E = �~rV (r)� ~r

r

dV

dr
: (125)
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Then

U 0 = � e

mec
~S � ~B +

e

mec2
~S � ~v�

 
�~r
r

dV

dr

!
(126)

~S � ~v�~( � r) = +~S � ~f�~v

U 0 = � e

mec
~S � ~B +

e

m2
ec

2
~S � (~r�~v)1

r

dV

dr

= � e

mec
~S � ~B +

e

mec2
~S � ~L1

r

dV

dr
(127)

since m~r�~v = ~L � angular momentum. This second term is the spin-orbit
interaction.

Now, if the electron rest frame is rotating { Thomas angular velocity ~!,
d~S=dt 6= ~��~B0. The general kinematic result from classical physics is:

@

@t
jrotation coordinates =

@

@t
jinertial coordinates� ~!� (128)

as an operator on any vector. So

@~S

@t
jrotation coordinates =

@~S

@t
jinertial coordinates� ~!�~S (129)

With this expression the interaction energy is changed to:

U = U 0 � ~S � ~!T (130)

where ~!T is proportional to the centripetal acceleration due to Er.

~!T � 1

2c2
~v�~a = 1

2c2
~v�

0
@e ~E
me

1
A

=
1

2mc2
~v�

 
�~r
r

dV

dr

!

=
1

2mec2
(~r�~v) 1

r

dV

dr
=

~L

2m2
ec

2

1

r

dV

dr
(131)

Thus

U = U 0 � 1

2m2
ec

2
~S � ~L1

r

dV

dr

= � e

mec
~S � ~B + (1� 1

2
)

1

m2
ec

2
~S � ~L1

r

dV

dr
(132)

The -1/2 is the famous one half. Including it, the observed �ne-structure spacings in
atomic spectra, due to electron spin, are correctly predicted.
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This schematic gives a heuristic indication of how the torque arises.

~�
�
�
���

`

�
�
�
���

�
�
�
�
���

+q

-q

�

�
�
�
�
�
�
�
�
�
�
�

s

~E

6

The force on each charge (positive and negative) is F = qE. The magnetic
moment is � = g`. The net torque is

� = qE`sin� = �Esin�

The energy relative to � = � is

�E = �2qE `
2
cos� = �~� � ~E
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10 A Simple Derivation of the Thomas

Precession

The following derivation is based upon a suggestion by E.M. Purcell.
Imagine an aircraft ying in a large circular orbit. Approximate the orbit by a

polygon of N sides, with N a very large number. As the aircraft traverses each of the
N sides, it changes its angle of ight by the angle � = 2�=N as shown in the �gure.

polygon
side of

�

B
B
B
B
B
B
B
B
B
B
BBM
B
B
BM

Z
Z
ZZ}

W

L
�

6

After the aircraft has own N segments, it is back at its starting point. In the
laboratory frame, the aircraft has rotated through an angle of 2� radians. However in
the aircraft's instantaneous rest frame, the triangles shown have a Lorentz-contraction
along the direction it is ying but not transversely. Thus at the end of each segment, in
the aircraft frame, the aircraft turns by a larger angle than the laboratory � = 2�=N ,
but by an angle �0 = � = W=(L=) = 2�=N . After all N segments in the aircraft
instantaneous rest frame the total angle of rotation is 2�.

The di�erence in the reference frame is

�� = 2�( � 1)

Since N has dropped out of the formula for the angle and angle di�erence, one can let
it go to in�nity and the motion is circular and the formula is for the rate of precession.

!P

!
=

��=T

2�=T
=  � 1

This equation, despite the simplicity of the derivation, is the exact expression
for the Thomas precession . The equation does not include the oscillating term
because the derivation neglected the fact that the front and rear of the inertial
airframe are not accelerated simultaneously.
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11 Relativistic Dynamics of Particles

We will consider two approaches to reconciling Newtonian mechanics with relativity:
(1) The phenomenological approach based upon experimental results (e.g.

length contraction, time dilation, clock synchronization) and generalize Newtonian
mechanics to be consistent. We start with Newton's Principles (postulated three
laws of mechanics) and generalize them to include Special Relativity.

(2) The second approach is to take literally Minkowski 3+1-D space and use
four-dimensional vectors and 4-D vector algebra in the way we are used to doing 3-D
vector algebra. In the previous sections we have seen how velocity and force (and
other important quantities) do not transform as 3-dimensional vectors in relativity.
We can, however, generalize them to 4-D vectors successfully.

First let us consider the phenomenological generalization of Newtonian
mechanics based upon experimental observations. This will provide a comparison
and motivation for the 4-vector approach.

11.1 Generalize Newton's Laws

11.1.1 Newton's Laws

First and Second Laws are a de�nition of force and implicitly the law of conservation
of mass. The Third law is the law of conservation of momentum.
1. Results of the Lorentz Transformation
2. Generalized Conservation of MassP

imi = constant, not each mi separately constant.
3. Conservation of Momentum

P
miuxi = constantP
miuyi = constantP
miuzi = constant

These postulates are as close as possible to those of Newton, but they produce
di�erent results.

11.2 The Mass of a Moving Particle

11.2.1 Space Billiards

Consider two identical space ships aligned to pass near each other with speed u in
opposite directions at a distance d apart in frame S. At identical times (ti = �xo=u =
�d=(2uy) in frame S each emits an identical steel ball with exactly opposite directions
(in a direction perpendicular to their direction of motion in their rest frames) and
with exactly equal transverse velocities uy. The timing and positions are such that
the two steel balls collide directly and elastically in the center (origin of frame S)
between the ships and each ball rebounds to go back and be recaptured by the ship
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that emitted it at time tr = xo=u = d=(2uy). The location of the upper and lower
ships is symmetrical by construction as is the collision.

S0 frame

S frame

XXXXXXXXXXXXXXXXzv��
���

���
���

���
��:

?

6

l
l

��

~u0 -
��

l
l l

l
��

l
l
��

-~u ~u-
��

l
l

~u ��

l
l

��
l
l

��~u XXX
XXX

XXXy��������9

PPPPPPPPPq��
��
��
��1v
v

Now consider the events in the frame S0 from the lower (in the picture) rest
frame. That is, the inertial frame where the lower ship is at rest. By using the Lorentz
transform it is easy to see that the events which were simultaneously in the observer
O's frame S are no longer simultaneous in the frame S0. In fact in frame S0 the upper
ship will emit its ball �rst, then the lower ship will emit its. The lower ship receives
its ball back next and then the upper ship receives its ball back.

t0 = 

�
t+

v

c2
x

�

Spaceship event Coordinates in S t0 in S0 �t
Upper emit �xo=u;�x0 (�xo=u� uxo=c

2)
Lower emit �xo=u;+x0 (�xo=u+ uxo=c

2) 2vxo=c2

Lower recapture xo=u;�x0 (xo=u � uxo=c
2)

Upper recapture xo=u;+x0 (xo=u+ uxo=c
2) 2vxo=c2

The balls still meet in the center by symmetry and because the Lorentz
transformations leave transverse directions unchanged. The upper ball has a lower
velocity and change in velocity upon scattering than the lower ball. If we want the y
component of momentum conserved, m1�uy1 +m2�uy2 = 0 and since �uy1<�uy2,
then the masses are not equal and m1>m2. The more rapidly moving mass is greater,
even though in frame S the two balls were identical and had identical mass by
construction and symmetry.

This is exactly the case of transverse collisions discussed below.
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11.2.2 Longitutional Collision

Consider the collision of two identical particles moving at each other with identical but
oppositely directed velocities. These particles are aligned so that they will undergo
an elastic collision and rebound in the opposite direction.

21

�u01 = u02

m0m0

+u01
�- uu

�
~v

y0

x0

S0S
y

x

6

--

6

In S0 symmetry says that an elastic collision leads to a reversal of velocities of
the colliding masses.

In S:

u1 =
u0 + v

1 + u0v=c2
; u2 =

�u0 + v

1� u0v=c2
:

From the conservation of mass:

m1 +m2 =M = constant

From conservation of momentum

m1u1 +m2u2 =Mv = constant

By considering the motion at the instant of relative rest.
In the following algebra we show that m = mo

m1

u0 + v

1 + u0v=c2
+m2

�u0 + v

1 � u0v=c2
= m1v +m2v

Subtracting the right hand side from both sides of the equation one has

m1

u0 + v � v � u0v2=c2

1 + u0v=c2
+m2

�u0 + v � v + u0v2=c2

1� u0v=c2
= 0

m1

u0 � u0v2=c2

1 + u0v=c2
+m2

�u0 + u0v2=c2

1� u0v=c2
= 0

m1

1 + u0v=c2
=

m2

1 � u0v=c2

m1

m2

=
1 + u0v=c2

1 � u0v=c2
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The law of transformation of
q
1 � u2=c2 is

q
1 � u2=c2 =

q
1� (u0)2=c2

q
1� v2=c2

1 + u0xv=c2

Multiplying the mass ratio equation by
q
1 � (u0)2=c2

q
1 � v2=c2 divided by itself give

m1

m2

=
1 + u0v=c2

q
1� (u0)2=c2

q
1� v2=c2

1 � u0v=c2
q
1 � (u0)2=c2

q
1 � v2=c2

One can then group the �rst term with its reciprocal to �nd

m1

m2

=

q
1� (u2)2=c2q
1� (u1)2=c2

Noting that +u0x = +u0 goes with u1 and �u0x = �u0 goes with u2. Thus

m1

q
1� (u1)2=c2 = m2

q
1� (u2)2=c2 = mo

implying

m =
moq

1 � u2=c2
= mo (133)

11.2.3 Transverse Collision

Consider a symmetric transverse collision

�u0u0

Inital State

�
-

m0

m0 �v0

+v0

?
6 zz

This is a glancing collision with no change in the momenta in the x direction.
In the S0 system, one sees a reversal of v0's on collision.

u0�u0

Final State

-
�

m0

m0
�v0

+v0

?

6 zz

In S system:

v01 = v0

q
1 � v2=c2

1 + u0v=c2
; v02 = �v0

q
1� v2=c2

1� u0v=c2
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The change in velocity of mass 1 is

�v1 = v1f � v1i = �2v0
q
1� v2=c2

1 + u0v=c2
:

The change in velocity of mass 2 is

�v2 = v2f � v2i = +2v0

q
1� v2=c2

1� u0v=c2
:

Note that �v1 6= �v2, so to conserver momentum py total, m1 6= m2.

�2m1v
0

q
1� v2=c2

1 + u0v=c2
+ 2m2v

0

q
1� v2=c2

1 � u0v=c2
= 0

m1

m2

=
1 + u0v=c2

1� u0v=c2
=

q
1 � u22=c

2q
1 � u21=c

2

So that by factoring and substituting one has

m1

q
1 � u21=c

2 = m2

q
1� u22=c

2

So for this to always be true

m =
moq

1 � u2=c2
= mo

as derived for longitudinal case. We can generalize for any elastic collision with
~ptotal = 0 in S0 to get the same result.

11.2.4 \Internal" Mass

Consider an undeformed (unstrained) particle able to move freely. Let its mass be
denoted by mo when it is at rest.

In frame S0 during a symmetric longitudinal collision

M =
moq

1 � u21=c
2
+

moq
1� u22=c

2

= mo

1 � u0v=c2q
1 � v2=c2

q
1 � (u0)2=c2

+mo

1 + u0v=c2q
1 � v2=c2

q
1 � (u0)2=c2

M =
2moq

1 � (u0)2=c2
q
1 � v2=c2

= u0v 2mo

At the instant of greatest deformation one might think M = 2mo=
q
1� v2=c2

because at that instant each particle has velocity ~v in S; but that is incorrect!

M>2mo=
q
1 � v2=c2 because energy is added in deforming the particles.
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11.2.5 Expressions for Force

We must choose a de�nition for force.

~F =
d

dt
(m~u)

is more useful than ~F = md~u
dt
, because then conservation of momentum implies that

action = reaction.

m =
moq

1� v2=c2
;

dm

dt
= mo

d

dt

0
@ 1q

1� v2=c2

1
A =

mo

(1� v2=c2)3=2
u

c2
du

dt

So
~F =

moq
1 � u2=c2

d~u

dt
+

mo�q
1 � u2=c2

�3~u uc2
du

dt

So force is not parallel to accelleration!
We take components in S and S0:

Fx = m _ux + _mux; F 0
x = m0 _u0x + _m0u0x

Fy = m _uy + _muy; F 0
y = m0 _u0y + _m0u0y

Fz = m _uz + _muz; F 0
z = m0 _u0z + _m0u0z

where _m0 = dm0=dt0 and _u0x = du0x=dt
0.

11.2.6 Transformation Equations for Force

The law of transformation of force is complicated by the fact that Fx, Fy, and Fz
are not three of the four components of a relativistic four vector. Here are the
relationships but we defer deriving them (see e.g. Rindler p. 91)

F 0
x =

Fx � ~F � ~uv=c2
1� uxv=c2

(134)

F 0
y =

q
1� v2=c2

1 � uxv=c2
Fy (135)

F 0
z =

q
1� v2=c2

1 � uxv=c2
Fz (136)

77



11.2.7 Transformation Equations for Mass

mo = m
q
1 � u2=c2 = m0

q
1� (u0)2=c2

q
1 � u2=c2 =

q
1� (u0)2=c2

q
1� v2=c2

1 + uxv=c2

So

m = m0 1 + uxv=c
2q

1 � v2=c2

Take the derivative with respect to time (d=dt)

dm

dt
=

1 + uxv=c
2q

1 � v2=c2

dm0

dt0
dt0

dt
+m0 v=c2q

1� v2=c2

du0x
dt0

dt0

dt

The inverse Lorentz transformation is

t =
t0 + x0v=c2q
1� v2=c2

so that
dt

dt0
=

1 + u0x=c
2q

1 � v2=c2

Substituting for dt0=dt one �nds

dm

dt
=
dm0

dt0
+
m0v

c2
1

1 + uxv=c2
du0x
dt0

(137)

11.3 Work and Kinetic Energy

We de�ne di�erential work
dW � ~F � ~dr

and also de�ne the di�erential kinetic energy

dEkinetic � dW = m
d~u

dt
� ~dr + dm

dt
~u � ~dr

Now
d~u

dt
� ~dr = d~u � d~r

dt
= d~u � ~u = ~u � d~u

1

2
d (~u � ~u) = ~u � d~u = 1

2
d
�
u2
�
= udu

So
dEkinetic = mudu+ u2dm
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=
mouduq
1 � u2=c2

+
mou

3=c2du�q
1 � u2=c2

�3 = moudu

(1 � u2=c2)3=2

Ekinetic =
Z u

u=0

moudu

(1 � u2=c2)3=2
=

moc
2q

1 � u2=c2
juu=0

Ekinetic =
moc

2q
1 � u2=c2

�moc
2 (138)

Notice that Ekinetic depends only on the �nal velocity squared and not on the way in
which it is attained.

Of course for v=c� 1,

Ekinetic ! moc
2

"
1 +

1

2

u2

c2
+ � � � � 1

#
=

1

2
mv2

"
1 +O(

v2

c2
)

#

In an elastic collision

�Ekinetic(1) = �Ekinetic(2)

from the equality of action and reaction.

11.4 Relations Among Mass, Energy, and Momentum

11.4.1 Conservation of Energy

From the relation dEkinetic = moudu= (1 � u2=c2)
3=2
, dE = c2dm and thus

�E = c2�m

So conservation of mass implies conservation of energy. Association of mass with
energy from �E = c2�m, suppose

m =
E

c2
and further E = mc2 = moc

2

~p = mo~v

11.4.2 Conservation of Momentum

With dE = c2dm, we have �(K:E:) = c2 (m�mo). So we postulate E = mc2 and
m = E=c2 for any kind of E and m.

If energy E is being bodily transferred (transported) with velocity ~u, the
associated momentum is

~G = m~u =
E

c2
~u:
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But there are other ways to transfer energy, e.g. pushing at A and get out a B. so
we have ~g de�ned as the density of momentum and ~S de�ned as energy ow, with
~g = ~S=c2 for any mechanism of energy transfer.

Dimensions: [G] = [Eu=c2] = m=T . [g] = m/(L2T; [S] = m/T3] =
Energy/(area * time).

12 Applications and Experimental Tests of

Particle Dynamics

12.1 Mass of High Velocity Electrons

Bucher using �-rays and Hadka using cathode rays con�rmed that m = mo=
p
1� �2

(where � � v=c). In 1926 Gerlach put in the Handbuch der Physik

V e = moc
2

2
4 1q

1� v2=c2
� 1

3
5 = moc

2 ( � 1) (139)

where V is the acceleration voltage.
All measurements really determine the ratio m=e; to get the relativistic result,

they must assume e = constant. This results form requiring Maxwell's equations
to be invariant under Lorentz transformation { Charge Conservation. We will revisit
this issue later.

12.2 Relation Between Force and Acceleration

By our convention the vector force ~F is given by

~F =
d

dt
(m~u) :

The force can be resolved into components parallel to ~u and ~a = d~u=dt;

~F = m
d~u

dt
+
dm

dt
~u =

moq
1� u2=c2

d~u

dt
+
d

dt

2
4 moq

1 � u2=c2

3
5~u

-

6
uy ~u

��
��
��
��
��
�*

ux

6
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~u = ux̂i+ uy ĵ; u2 = u2x + u2y

Fx =
moq

1� u2=c2

dux

dt
+
d

dt

2
4 moq

1 � u2=c2

3
5ux

Fy =
moq

1� u2=c2

duy

dt
+
d

dt

2
4 moq

1� u2=c2

3
5uy

Consider an acceleration in the y direction:

dux

dt
= 0:

Then
du2

dt
= 2uy

duy

dt

So that

Fx =
mo

(1 � u2=c2)3=2
uxuy

c2
duy

dt

Fy =
moq

1 � u2=c2

duy

dt
+

mo

(1� u2=c2)3=2
u2y

c2
duy

dt

=
mo

(1� u2=c2)3=2

h
1� u2=c2 + u2y=c

2
i duy
dt

=
mo

(1� u2=c2)3=2

h
1 � u2x=c

2
i duy
dt

So the ratio of Fx=Fy is
Fx

Fy
=

uxuy

c2 � u2x

We conclude that to accelerate in the y direction one must apply both Fy and
Fx =

uxuy
c2�u2xFy. To accelerate in the x direction one must apply Fx and Fy =

uxuy
c2�u2yFy.

Under what conditions would the force ~F and acceleration ~a be in the same
direction? If Fx and uy are both zero, then Fy must be

Fy =
mo

(1� u2=c2)1=2
duy

dt

.
Thus force and acceleration are parallel (~F k ~a) in y direction when

perpendicular to the motion (? ~u) and thus the velocity and acceleration are

perpendicular (~a ? ~u). Then the \transverse mass" is mo=
q
1 � v2=c2.
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If Fx and ux are both zero:

Fy =
mo

(1 � u2=c2)1=2
duy

dt
+ =

mo

(1 � u2=c2)3=2
u2y

c2
duy

dt

=
mo

(1� u2=c2)3=2
duy

dt

Thus ~F k ~a in y direction k ~u (~a k ~u) is longitudinal acceleration. Then the
\longitudinal mass" is mo=(1�u2=c2)3=2 and we conclude mtransverse<mlongitudinal. The
\longitudinal mass" is bigger because the force must also do work to raise the energy.
(A transverse force does no work.)

Do not be confused. The \true" mass is always mo=
q
1 � u2=c2, which is

conserved in a closed system.

12.3 Force Exerted by a Moving Charge e on a charge e1

Pick a coordinate system in which one charge is �xed. E. g. e �xed in S0 with e at
the origin of S and e1 located at x, y, z at time considered.

ZZ~

e1v

S0

y0

x0

z0

ev
S

�~v�
z

x

y

-

6

�
�
�
�+

�
�
�
�+

6

-

In frame S, uex = v, uey = uez = 0.
The force on e1 in S0 is electrostatic.

F 0
x =

ee1

(x02 + y02 + z02)3=2
x0

F 0
y =

ee1

(x02 + y02 + z02)3=2
y0

F 0
z =

ee1

(x02 + y02 + z02)3=2
z0

Now transform to frame S in which e moves.

Fx =
ee1

s3

�
1� v2=c2

�
fx+ v

c2
(yuy + zuz)g
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Fy =
ee1

s3

�
1� v2=c2

� �
1 � uxv

c2

�
y

Fz =
ee1

s3

�
1� v2=c2

� �
1 � uxv

c2

�
z

where s2 = x2 + (1� v2=c2) (y2 + z2).
This result is restricted to constant velocity v of e in x direction. If not

constant, one must use the retarded potential.
Special Example: e �xed at origin, e1 constrained to move in y direction.

uy
6

y

x

ux = v

ux = v

-

-

-

6

v
ve1

e

The force on e1 is:

Fx =
ee1

s3

�
1 � v2=c2

�
yuy

Fy =
ee1

s3

�
1� v2=c2

� �
1 � uxv

c2

�
y

Fx

Fy
=

uxuy

c2 � u2x
;

which is just right to produce acceleration in the y direction only!

12.4 Nuclear Reactions

These were the �rst accurate tests of relations between mass and energy, also
momentum. The experiments of Oliphant, Kinsey, and Rutherford (1933) and
Bainbridge (1933) are cited.

Li7 +H1 ! Be8 ! He4 +He4 + 17 MeV

Li6 +H2 ! Be8 ! He4 +He4 + 17 MeV

Solar Energy: Around this time Hans Bethe realized that the primary source
of solar energy is the reaction

4H1 ! He4 + 30 MeV

Uranium Fission: Han and Sparissman found

U235 + n1 ! F1 + F2 + a few neutrons + 200 MeV
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where F1 and F2 are the �ssion fragments which are randomly distributed but with
average atomic number around 90 and 140 respectively.

\Monochromatic" Neutrons

Li7 +H1 ! Be7 + n � 1:6 MeV

is a reaction which absorbs energy.

12.5 Light Pressure

Let E � energy density. Then E=c2 is the equivalent mass density of that energy.
I.e. energy density has an e�ective inertia density. The momentum density is then
Ec=c2 = E=c � � and �c = p = the change of momentum per unit area per second if
light is absorbed. Since �c = E, then p = E in absorption.

For reection p = 2E.
In a cavity (as in hohlraum) p = E=3.

12.5.1 Mass, Energy, Momentum for Photons

E = h�; m = h�=c2

G = h�=c; ~G =
h�

c2
~c

12.5.2 Compton E�ect

Arthur Compton provided the relativistic treatment of a photon scattering on a free
electron.

�

�

p =
h(����)

c

pe =
moup
1�u2=c2electron

v
@
@
@@R

�
�
�
�
�
�
��3

x
P =

h�
c -

Conservation of energy yields:

h�� = moc
2

2
4 1q

1� v2=c2
� 1

3
5

Conservation of momentum in x-direction yields the equation:

h�

c
=
h(� ���

c)
cos� +

mouq
1� v2=c2

cos�
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Conservation of momentum in y-direction yields the equation:

h� +��

c
sin� =

mouq
1 � v2=c2

sin�

The solution to these equations is:

�� =
2h

moc
sin2

 
�

2

!
(140)

The importance to Quantum Mechanics was not only the direct evidence of
photon scattering but the Compton e�ect is used to explain the \-ray microscope"
interpretation of the Uncertainty Principle. The uncertainty in coordinate above is

�xmin �
h

mc

To make it go to zero requires an in�nite mass m and photon energy.

12.5.3 Pair Production

An energetic photon may have su�cient energy to convert into an election-positron
(e�e+) pair.

~p2 =
mo~u2p
1�v2=c2

~p1 =
mo~u1p
1�v2=c2

~u1

~u2



e�

e+

Q
Q
Q
Q
Q
QQs

�
�
�
�
��>

-

This process cannot occur in vacuum because it cannot conserve both energy
and momentum. It must occur in the vicinity of a mass which can these by absorbing
some of the E and ~p.

12.5.4 Positron Annihilation

The reaction e+ + e� ! , that is, annihilation of a positron with an electron to a
single energetic photon does not occur. However, the reaction e+ + e� !  +  is
commonly observed.

12.5.5 Zitterbewegung and Antiparticles

To make quantum mechanics and Special Relativity plus causality consistent requires
the existence of an identical (CPT) antiparticle for every particle. Consider the world
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line of an electron described by a Gaussian wave packet. Clearly parts of the packet
are outside the light cone of the central ray (or any other portion). That is parts of
the wave packet have space-like separation and are out of causal contact. However,
the geometrical optics or particle path approach can understand that an electron does
not necessarily travel in a straightline. The electron can have a jittering path which
is bounded by the wave packet and set by the Uncertainty Principle.

Consider the following scenario: By the Uncertainty Principle virtual pairs
consisting of an electron and positron can appear in the vacuum. The original electron
can annihilate with the positron and if it has just the right energy (o� the mass shell
~p�tildep 6= (moc

2)2) then the annihilation photons have zero energy and do not appear
while the other member of the pair, the new electron continues along a parallel path
to the original electron. This description conserves energy and momentum but leaves
the electron path displaced by an amount set by the scale allowed by the Uncertainty
Principle �x = �hc=mec

2 or the Compton wavelength of the electron.
This scenario can be made consistent with causality in Special Relativity

provided that the antiparticle behaves exactly like the particle going backwards in
time. One can draw a world line for the electron that explains it geometric jittery
path or its �nite non-locality.

12.6 Some Practical Examples of the Use of Invariants

In this section we show some practical examples of how to use invariants as derived
either laboriously or through the use of 4-vectors of Minkowski space. This will
motivate the next section in which we will learn the properties of vectors and tensors
in 3+1-D space.

12.6.1 Mass, ~�, 

First consider the relation between mass, energy, and three momentumor equivalently
the norm of the 4-momentum �

moc
2
�2

= E2 � p2c2 (141)

Conservation of energy and momentum (4-momentum) for a collection of particles in
a given frame leads to the invariant for the total mass M .

�
Mc2

�2
=

 X
i

Ei

!2

�
 X

i

pic

!2
(142)

where M is the center-of-mass equivalent mass.

~� =
~p

E
~�CM =

~pCM

ECM

(143)

 =
1q

1 � u2=c2
=

E

moc2
CM =

ECM

MCMc2
(144)
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12.6.2 Energy, momentum, and velocity of one particle in rest frame of

another

The energy momentum, and velocity of one particle in rest frame of another can be
calculated readily by making use of the concept of invariants. If one is given the
4-momenta of two particles in any frame the energy of particle two from the rest
frame of particle one E21 can be found by a simple relationship. Let ~p1 and ~p2 are the
momentum four vectors of particles one and two. The dot or inner product between
the two 4-vectors is de�ned as

~p1 � ~p2 = E1E2=c
2 � ~p1 � ~p1

where ~p1 and ~p1 are the relativistic 3-momenta of particles one and two respectively.
We can derive the relationship using the principle that this dot product should be
invariant to frame of reference. Thus

~p1 � ~p2 = ~p01 � ~p02
Take the system S0 to be the frame in which particle one is at rest. Then ~p01 =
(m1c; 0; 0; 0), where m1 is the rest mass of particle one and thus

~p1 � ~p2 = ~p01 � ~p02 = m1E21

Dividing through by m1 gives the relationship

E21 =
~p1 � ~p2
m1

(145)

Once we have the energy E21 of particle two in the rest frame of particle one, it
is easy to �nd its three-momentum amplitude making use of the relationship between
mass, energy, and three-momentum amplitude.

E2
21 = jp21cj2 + (m2c

2)2 ! jp21cj2 = E2
21 � (m2c

2)2

where m2 is the rest mass of particle two.

jp12j2 =
(~p1 � ~p2)2

(m1c)
2 � (m2c)

2

c2
=

(~p1 � ~p2)2 �m2
1m

2
2c

4

m2
1c

2
(146)

And for the relative velocity we have

�221 =
jp21j2
E2
21

=
(~p1 � ~p2)2 �m2

1m
2
2c

4

(~p1 � ~p2)2
= 1� m2

1m
2
2c

4

(~p1 � ~p2)2
= 1�

 
m2c

2

E21

!2

(147)

12.6.3 Energy, momentum, and velocity of a particle in the center of

momentum frame

Use the same formulae as above but for particle one use the center-of-momentum
particle (�ctional) as particle one.
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5 Four Vectors

A natural extension of the Minkowski geometrical interpretation of Special Relativity
is the concept of four dimensional vectors. One could also arrive at the concept by
looking at the transformation properties of vectors and noticing they do not transform
as vectors unless another component is added. We de�ne a four-dimensional vector
(or four-vector for short) as a collection of four components that transforms according
to the Lorentz transformation. The vector magnitude is invariant under the Lorentz
transform.

5.1 Coordinate Transformations in 3+1-D Space

One can consider coordinate transformations many ways: If x1; x2; x3; x4 = x; y; z; ict,
then ordinary rotations (in x1 � x2 plane around x3)

x01 = x1cos� + x2sin�

x02 = �x1sin� + x2cos�

�
cos� sin�

�sin� cos�

�

But in x1 � x4 plane:

x01 = x1cos� + x4sin�

x04 = �x1sin�+ x4cos�

�
cos� sin�

�sin� cos�

�

where the angle � is de�ned by

cos� = 1=
q
1� v2=c2 = 1=

p
1 + tan2� = 

sin� = i
v=cq

1� v2=c2
=

tan�p
1 + tan2�

tan� = iv=c = i�:

And thus one has the trignometic identity:

cos2�+ sin2� = 2
�
1 � �2

�
= 1

x01 =  [x1 + (ict)(i�)] =  [x1 � �ct]

x04 =  [x4 � i�x1]

ict0 =  [ict� i�x1]

ct0 =  [ct� �x1]

t0 =  [t� �x1=c]

So the extension to 3+1-D includes Lorentz transformations, if angles are
imaginary.
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Really, we are considering the set of all 4 � 4 orthogonal transformations
matrices in which one angle may be pure imaginary.

In general all angles may be complex, combining real rotations in 2-space with
imaginary rotations relative to t.

An alternate way of writing this is

x0 = xcosh�� ctsinh�

ct0 = �xsinh�+ ctcosh�

where � = cosh�1.
x0 = xcos(i�) + ictsin(i�)

ict0 = �xsin(i�) + ictcos(i�)

and
� = i� = icosh�1; tan� = i� = iv=c

Still another notation is (with x4 = ict)

x01 =  (x1 + i�x4)

x04 =  (x4 � i�x1)

The transformation matrix is then0
BBB@

 0 0 i�

0 1 0 0
0 0 1 0

�i� 0 0 

1
CCCA

Still yet another notation is with x0 = ct

x00 =  (x0 � i�x1)

x01 =  (x1 + i�x0)

The transformation matrix is then

0
BBB@

0 1 2 3

0  �� 0 0
1 ��  0 0
2 0 0 1 0
3 0 0 0 1

1
CCCA
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5.1.1 Generalized Lorentz Transformation

For spatial coordinates the Lorentz transform �ts the linear form

(x�)0 =
4X

�=1

��
�x

� (148)

subject to the condition that the proper length

(cd� )2 = �(ds)2 =
X
�

(x�)0 =
X
�

x� = (ct)2 � j~xj2 (149)

is an invariant. This condition requires that the coe�cients ��
� form an orthogonal

matrix: X
�

��
��

�
� = ���X

�

��
��

�
� = ���X

�

��
��

�
� = ��� (150)

where the Kronecker delta is de�ned by ��� = ��� = ��� = 1 when � = � and 0
otherwise.

The invariance group can be enlarged to be the Poincare0 group by the addition
of translations:

(x�)0 =
4X

�=1

��
�x

� + a� (151)

The full group includes: translations, 3-D space rotations, and the Lorentz boosts.

5.2 The Inner Product of 3+1-D Vectors

The de�nition of the inner product (dot product) must be modi�ed in 3+1 dimensions.

~A � ~B = A1B1 +A2B2 +A3B3 +A4B4

if x4 = ict. But with our usual convention

~A � ~B = A0B0 �A1B1 �A2B2 �A3B3

or with the opposite signature metric one has

~A � ~B = �A0B0 +A1B1 +A2B2 +A3B3

~A � ~B = A1B1 +A2B2 +A3B3 �A4B4

if x4 = ct which is often the convention for the opposite sign convention. It is an
exercise to show that the inner product is unchanged under a Lorentz transformation.
Can be done simply by substitution. This can be extended to the general class of
Lorentz transformations.
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5.3 Four Velocity

So we have the position 4-vector ~x = (x0; x1; x2; x3) and the displacement 4-vector
~dx = (dx0; dx1; dx2; dx3). What other 4-vectors are there? That is what other 4-
vectors are natural to construct? What we mean by a four-vector is a four-dimensional
quantity that transforms from one inertial frame to another by the Lorentz transform
which will then leave its length (norm) invariant.

Consider generalizing the 3-vector velocity (vx; vy; vz) = (dx=dt; dy=dt; dz=dt)
what can we do to make this into a 4-vector naturally? One clear problem is that we
are dividing by a component dt of a vector so that the ratio is clearly going to Lorentz
transform in a complicated way. We need to take the derivative with respect to a
quantity that will be the same in all reference frames, e.g. d� the di�erential of the
proper time, and add a fourth component to make the 4-vector. It is clear that the
derivative of the 4-vector position (ct; x; y; z) with respect to the proper time � will
be a 4-vector for Lorentz transformations since (ct; x; y; z) transform properly and d�
is an invariant. So we can de�ne the 4-velocity as

u� =
dx�

d�
; ~u =

 
dct

d�
;
dx

d�
;
dy

d�
;
dz

d�

!
(152)

Note that

c2d� 2 = c2dt2 � dx2 � dy2 � dz2 = dt2
 
c2 � dx

dt

2

� dy

dt

2

� dy

dt

2
!

= dt2
�
c2 � v2x � v2y � v2z

�
= dt2

�
c2 � v2

�
or the time dilation formula we got before

d�

dt
=
q
1� v2=c2; and

dt

d�
=

1q
1� v2=c2

= 

So we can now explicitly write out the 4-velocity using the chain derivative rule:

u� =
dx�

d�
=
dx�

dt

dt

d�

~u = (u0; u1; u2; u3) = (c; vx; vy; vz) =  (c; vx; vy; vz)

Thus three components of the 4-velocity are the three components of the 3-vector
velocity times .

Note also that the norm - the magnitude or vector invariant length - of the
four-velocity is not only unchanged but it is the same for all physical objects (matter
plus energy). For 3+1 dimensions the norm or magnitude is found from the inner
product or dot product which has the same signature as the metric (see just above)
so that

~u � ~u = u20 � u21 � u22 � u23 = 2
�
c2 � v2x � v2z � v2z

�
= c2

1 � v2=c2

1 � v2=c2
= c2
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Thus every physical thing, including light, moves with a 4-velocity magnitude of c
and the only thing that Lorentz transformations do is change the direction of motion.
A particle at rest is moving down its time axis at speed c. When it is boosted to a
�xed velocity, it still travels through space-time at speed c but more slowly down the
time axis as it is also moving in the spatial directions.

One should also note that as the spatial speed (three-velocity) approaches c,
all components of the 4-velocity u� are unbounded as  !1. One cannot then de�ne
a Lorentz transformation that moves to the rest frame. Thus all massless particles
will have no rest frame.

5.3.1 Law of Transformation of a 4-Vector

We can write the transformation in our standard algebraic Lorentz notation

A00 =  (A0 � �A1)  = 1=
q
1 � �2

A01 =  (A1 � �A0) � � V

c

A02 = A2; A03 = A3

where � and  refer to the relative velocity V of the frames.

5.3.2 Law of Transformation of a 4-Velocity

u01 =  (u1 � �u0)

where � and  are for the relative velocity of the frames and not of the particle. But
in the formula for the 4-velocity

~u = (u0; u1; u2; u3) = (c; vx; vy; vz) =  (c; vx; vy; vz)

The  is for the particle! So we should have labeled it p and the � and  for the
frame transform �f and f . Then we have

0pv
0
x = f (pvx � �fpc)

So we can get out a formula for v0x

v0x =
fp

0p
(vx � V ) =

q
1 � �0pq

1� �p
q
1� �f

(vx � V )

This is our old friend on the law of transformation of
q
1� u2=c2

q
1 � u2=c2 =

q
1 � (u0)2=c2

q
1� V 2=c2

1 + u0xV=c
2

92



and q
1 � (u0)2=c2 =

q
1� u2=c2

q
1� V 2=c2

1 + uxV=c2

which is simply
1

0p
=

1

pf (1 � uxV=c2)

So

v0x =
vx � V

1� uxV=c2

as derived earlier by the di�erential route.
Continuing onward

u02 = u2; or 0pv
0
y = pvy

so that
v0y =

p

0p
vy

p

0p
=

1

f (1� uxV=c2)

and

v0y =

q
1� V 2=c2

1� uxV=c2
vy

which is the same relationship as before from the di�erential Lorentz transform.
Similarly for v0z and v

0
t:

u0o = f (u0 � �fu1)

Explicitly this is

0pc = f (pc� puxV=c) = pfc
�
1� uxV=c

2
�

So
0p = pf

�
1 � uxV=c

2
�

which is our relation from the transformation of 's and its reciprocal used above.

5.4 Four Momentum

What is the natural extension of the 3-vector momentumto 4-momentum. The answer
is clear from dimensional/transform analysis and from our experimental approach on
how masses transformed. The 4-momentum is simply:

p� = mou�; ~p = (p0; p1; p2; p3) = mo (c; vx; vy; vz) (153)
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The three spatial components are just the Newtonian 3-momentum with the mass of
the particle replaced by mo.

We can see that the 4-momentum also has an invariant norm by making use
of our results for the 4-velocity:

~p � ~p � p20 � p21 � p22 � p23 = E2=c2 � p2 = m2
o~u � ~u = m2

oc
2

Thus the invariant length of the 4-momentum vector is just the rest mass of the
particle times c.

5.5 The Acceleration Four-Vector

In a similar way one may derive the acceleration four-vector. Again we di�erentiate
with respect to the proper time � .

a� =
du�

d�
(154)

The four-vector acceleration will have a part parallel to the acceleration three-vector
and a part parallel to the velocity three-vector.
Exercise: Prove that the inner product of the 4-acceleration and the 4-velocity are
zero; ~a � ~u = 0 as they must be if the norm of the four-velocity is to remain constant
c.

We have also constructed the 4-acceleration to be a 4-vector so that ~a � ~a is an
invariant. Evaluate it in the rest frame ~a � ~a = j~aj2

~a � ~a = j~arest framej2

in any frame. This can be very useful in various calculations and we will use it later
to treat radiation from and accelerating charged particle.

Acceleration 4-vector transforms by the relations:

a00 = f (a0 � �fa1) ; a02 = a2;

a01 = f (a1 � �fa0) ; a03 = a3;

This is the best starting place from which to derive the detailed Lorentz
transformation equations for acceleration.

5.6 The Four Vector Force

We now consider the four-vector force, which we de�ne the following way:

~F � d~p

d�
(155)

~F � d~p

d�
=
d~p

dt

dt

d�
= 

d~p

dt
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~F � (F0; F1; F2; F3) =  (W=c; FN1; FN2; FN3)! 
�
~FN � ~�; FN1; FN2; FN3

�
(156)

where ~FN is the three-dimensional Newtonian force, e.g. ~FN = (FN1; FN2; FN3)
Note that the four force can be space-like, time-like and null. If a frame can

be found where the three-force on an object is zero but the object is exchanging
internal energy with the environment, then the four-force is time-like. The converse
is space-like.

Then the 4-vector force ~F has the same transformation law as all 4-vectors:

~F 0
0 = f

�
F0 � �f ~F1

�

~F 0
1 = f

�
F1 � �f ~F0

�
~F 0
2 = ~F2; ~F 0

3 = ~F3

So we can now conveniently transform any of the familiar vectors used in mechanics,
but not electric and magnetic �elds, and pseudovectors obtained from cross-products,
such as angular momentum and angular velocity. We will treat these later.

The 4-vector force transforms are much easier than the 3-D fource transforms
which involve a 3. See the homework problem for the transformaiton of acceleration
to grasp how much more complicated it is.

5.7 4-D Potential

It is convenient to do physics in terms of potential and �nd the resulting force as the
derivative, e.g. the gradient, of the potential. Classical physics examples are:

FG = �m~r�G Newtonian Gravitation
FE = �q ~r�E Electrostatics (157)

Once we have a 4-D potential, then we need to learn how to take derivatives in 4-D
spaces.

One approach is to make the simplest possible frame-independent (scalar)
estimate of the interaction of two particles. This manner of thinking eventually leads
one to the interaction Lagrangian as a the product of the two currents (electrical,
matter, strong, weak, gravitational).

L = �~j1 � ~j2 (158)

where � is the coupling constant and the next term is the inner (4-D dot) product of
the current of particle 1 and the current of particle 2. When the two currents are in
contact (zero proper distance separation), there is an interaction. When they are not
in proper distance contact, there is no interaction. This means that all interaction
is on the proper distance null (the light cone). Thus there is no action at a proper
distance. It is manifestly invariant as the inner product of two 4-D vectors.
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From this Lagrangian we can generate the 4-D potential of the e�ect of all
other currents (or a single current) ~j2 on our test particle which has current ~j1.

~A(~x1) =
Z Z Z Z

�f(s212)~j2(~x2)dV2dt2 =
Z Z Z Z

�f(c2(t1� t2)2� r212)~jdV dt (159)

where s212 � j~x1 � ~x2j2 = c2(t1 � t2)2 � r212 is the invariant separation between ~x1
and ~x2 dV is the 3-D spatial volume and dt is the time. f(s212) is a function which is
zero every where but peaks when the square of the 4-vector distance s212 between the
source (2) and the point of interest (1) is very small. The integral over f(s212) is also
normalized to unity. The Dirac delta function is the limiting case for f(s212). Thus
f(s212) is �nite only for

s212 = c2(t1 � t2)
2 � r212 � ��2 (160)

Rearranging and taking the square root

c(t1 � t2) �
q
r212 � �2 � r12

s
1� �2

r212
� r12(1 �

�2

2r212
) (161)

So

(t1 � t2) �
r12

c
� �2

2cr12
(162)

which says that the only times t2 that are important in the integral of ~A are those
which di�er from the time t1, for which one is calculating the 4-potential, by the
delay r12=c ! { with negligible correction as long as r12 � �. Thus the Bopp theory
approaches the Maxwell theory as long as one is far away from any particular charge.

By performing the integral over time one can �nd the approximate 3-D volume
integral by noting that f(s212) has a �nite value only for �t2 = 2� �2=2r12c, centered
at t1 � r12=c. Assume that f(s212 = 0) = K, then

~A(~x1) =
Z
~j(t2; ~x2)f(s

2
12)dV2dt2 �

K�2

c

Z ~j(t� r12=c; ~x2)

r12
dV2 (163)

which is exactly the 3-D version, if we pick K so that K�2 = 1.

5.8 Derivative in 4-Space

The 3-D vector gradient operator is DEL:

~r = (
@

@x
;
@

@y
;
@

@z
) (164)

which behaves as a 3-D vector.
This can be generalized to 4-D:

~2 = (
@

@x0
;
@

@x1
;
@

@x2
;
@

@x3
) (165)
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How does it transform?

~20 = (
@

@x00
;
@

@x01
;
@

@x02
;
@

@x03
) (166)

Operate �rst on a scalar function �(x0; x1; x2; x3)

@�(x0; x1; x2; x3)

@x0�
=
X
�

@�

@x�

@x�

@x0�
=
X
�

@�

@x�
R�� (167)

where R�� is the rotation matrix/tensor de�ned by

x0� =
X
�

a��x�

x� =
X
�

(a�1)��x
0
� (168)

A�1 = ay (y means transpose), if a is orthogonal.

x� =
X
�

a��x
0
� (169)

@�

@x0�
=

X
�

a��
@�

@x�

x0� =
X
�

a��x� (170)

so that
~20� =

X
�

a�� ~2� (171)

and ~2 is a Lorentz 4-vector.

5.9 Operate with ~2

Operate with ~2 on a Lorentz 4-vector, to get the dot (inner) product:

~2 � ~x =
@ct

@ct
+
@x

@x
+
@y

@y
+
@z

@z
= 1 + 1 + 1 + 1 = 4 = invariant (172)

Now operate on velocity 4-vector ~u:

~2 � ~u =
@c

@ct
+
@vx

@x
+
@vy

@y
+
@vz

@z

=
@

@t

1p
1 � �2

+
@

@x

vxp
1 � �2

+
@

@y

vyp
1� �2

+
@

@z

vzp
1 � �2

=
@

@t
(

1p
1 � �2

) + ~r � ( ~vp
1 � �2

) (173)

This equation is an expression related to continuity.
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5.9.1 Hydrodynamics

Conservation of uid matter is expressed by the equation:

@�

@t
+ ~r � (�~v) = 0 (174)

If one integrates this equation over a �xed volume containing mass M

@

@t

Z
vol
�dxdydz +

Z
vol

~r � (�~v)dxdydz =M (175)

The �rst term is the mass contained in the volume and the second part is the
divergence theorem and yields:

@M

@t
+
Z
surface

�~v � n̂dS = 0 (176)

@M
@t

= - outward transport of mass and equals the inward transport of mass.
Since our expression for ~2 � ~u is

~2 � ~u = @

@t
(

1p
1 � �2

) + ~r � ( ~vp
1� �2

) (177)

the role of density is played by  = 1=
p
1 � �2.

5.10 The Metric Tensor

Now before moving to make electromagnetism consistent with our relativistic
mechanics, we need to generalize the concepts of the distance, vectors, vector algebra
and tensors as they work in 3+1 D space.

The metric tensor de�nes the measurement properties of space-time. (Metric
means measure { Greek: metron = a measure.)

Cartesian { at space

(ds)2 =
X
i;j

gijdxidxj (178)

by de�nition gij = gji since the measure must be symmetric under interchange of
coordinate multiplication order.

In the general case: Cartesian { at space

(ds)2 =
X
i;j

gijdx
idxj = scalar invariant (179)

(Note the superscripts. Section of covariant and contravariant vectors explains this.)
If gij is diagonal, the coordinates are orthogonal.
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Physical interpretation: gii = h2i , where hi is de�ned by the components of the
vector line element, dsi = hidxi. An example of this is spherical polar coordinates:

ds2 = dr2 + r2d�2 + r2sin2�d�2 (180)

gij =

2
64 1 0 0
0 r2 0
0 0 r2sin2�

3
75 (181)

For the 3 + 1 dimension Minkowski space-time

ds2 = d(c� )2 = d(ct)2 � dx2 � dy2 � dz2 (182)

g�� � ��� =

2
6664
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

3
7775 (183)

In general the symbol ��� is used to denote the Minkowski metric. Usually it
is displayed in rectangular coordinates (ct; x; y; z) or (x0; x1; x2; x3) but could be
expressed in spherical (ct; r; �; �) or cylindrical (ct; r; �; z) equally well.

The o�-diagonal gij =
q
hihj(~dsi � ~dsj) for i 6= j. An example is skew

coordinates in two dimensions.

x̂1

x̂2

�

O�
�
�
�
�
�
���

-
x̂1

x̂2

�
�
�
�
�
�
���

-O��
���

���
���

���
�:~S
���:-�
~dS

~dx1

~dx2

By the law of cosines

ds2 = dx21 + dx22 + 2dx1dx2cos�
= g11dx

2
1 + g22dx

2
2 + g12dx1dx2 + g21dx1dx2 (184)

ds1 = dx1; ds2 = dx2
g11 = h21 = 1; g22h

2
2 = 1

(185)

g12 = g21 =
q
h1h2cos� = cos� (186)

gij =
�

1 cos�

cos� 1

�
(187)
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5.11 Contra & Covariant Vectors

First we consider a simple example to illustrate the signi�cance of contravariant and
covariant vectors. Consider two non-parallel unit vectors â1 and â2 in a plane with
â1 � â2 = cos� 6= 1.

â1

â2

�

O�
�
�
�
�
�
���

- ���
���

���
���

���:

â1

â2

�
�
�
�
�
�
���

-O

~S

A displacement from O to P can be represented by a vector, ~S. Its components
in the directions of â1 and â2 can be denoted S1 and S2:

~S = S1â1 + S2â2 (188)

���
���

���
���

���:

â1

â2

�
�
�
�
�
�
���

-O

~S

S2

S1

���

���
� -

�
�
�
�

HH

HH

Another set of basis vectors ~a1 and ~a2, respectively, may be de�ned, being
perpendicular to â1 and â2 and having lengths found the following way: Let â3 be a
unit vector normal to the plane, proportional to â1�â2. Then

~a1 =
â2�â3

â1�â2 � â3
=

ê1

sin�
(189)

~a2 =
â3�â1

â1�â2 � â3
=

ê2

sin�
(190)

We denote the triple scalar product by [ ]123.
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ê2

ê1

6

S
S
S
S
SSw

�
�
�
�
��>

-O
â1

â2

?

6

j~a2S2j

j~a1S1j

S2

S1

HHHHHHHj

HH
HH

HH
HY

�
�

�
�
HHHHHHHHHHHHHHHHj

6

HHHHHHHHj

6

â1
���

���
���

���
���

�:â2

�
�
�
�
�
�
���

-O

~S

�
�
�
�

The displacement vector, ~S may also be expressed by its components S1 and
S2 as follows:

~S = S1~a
1 + S2~a

2: (191)

The relations among S1, S2, S1, and S2 may be found by elementary geometry:
They are:

v1 = v1 + v2cos� (192)

v1 = v1cos� + v2 (193)

v1 = (v1 � v2cos�)=sin
2� (194)

v2 = (�v1cos� + v2)=sin
2�: (195)

Using the original pair of unit vectors,

S2 = (S1)2 + (S2)2 + 2(S1)(S2)cos�

=
2X

i;j=1

gijS
iSj (196)

with the metric tensor

gij =
�

1 cos�

cos� 1

�
(197)

De�ned to be symmetric.
The tensor gij is de�ned by

2X
j=1

gijgjk = �ik: (198)

It is easy to �nd that

gij =
1

sin2�

�
1 �cos�

�cos� 1

�
: (199)
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From this relation one �nds that

Si =
X
j

gi;jS
j (200)

and
Si =

X
j

gi;jSj: (201)

The components Si are contravariant and the components Si are covariant.
The square of the length of ~S is (as given above)

j~Sj2 =
X
i;j

gijS
iSj =

i;jX
gijSiSj; (202)

but is given more compactly by

S2 =
X
j

SjS
j (203)

Other relations of interest are:

gij =
Signed Minor of gij

Det gij
=

Cofactor of gij
g

(204)

For this example Det gij = g = sin2�; the cofactor of gij is (�1)i+jgji =
(�1)i+jgij because gij and gij are symmetric.

Returning to the original sets of basis vectors

~a1 =
â2�â3

â1�â2 � â3
=
â2�â3
[ ]123

(205)

and others by cycling indices, by substitution one has:

â1 =
â2�â3

â1�â2 � â3 =
â2�â3

[ ]123
(206)

[ ]123 =
1

[ ]123
=

1

sin�
(207)

Also one has

Det(gij) =
1

Det(gij)
=

1

sin2�
: (208)
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5.12 Electric Charge

We now consider the implications for electric charge. We de�ne electric charge density
as the charge per volume, �. We have a law of conservation of charge: Charge cannot
be created or destroyed. Thus

@�

@t
+ ~r � (�~v) = 0: (209)

So the charge-current density Lorentz 4-vector

~j � ~� = (�c; �vx; �vy; �vz) = (j0; j1; j2; j3) (210)

(where � = �0) and
~2~j = 0 (211)

is the equation for the conservation of charge. ~j is the 4-vector charge current.
Now consider the vector and scalar potentials of the electromagnetic �elds.

~B = ~r� ~A where ~A =
1

c

Z Z Z ~j dV

r

~E = �~r�� 1

c

@ ~A

@t
where � =

Z Z Z
� dV

r
(212)

The Lorentz 4-vector potential is

~A = (�; Ax; Ay; Az) = (A0; A1; A2; A3) where A� =
1

c

Z Z Z
j� dV

r
(213)

Then the inner product gives

~2 � ~A = 2�A
�

=
@�

@ct
+
@Ax

@x
+
@Ay

@y
+
@Az

@z

=
1

c

@�

@t
+ ~r � ~A = 0 (214)

This is the equation of Lorentz gauge invariance.

5.12.1 Box on ~A is a four vector

It is clear that ~j = �0~u is a four vector since ~u was constructed to be one and we
constructed ~j as a scalar (rest frame charge density) times that four vector. However,
I merely asserted that ~A was a four vector. That is true only if dV=r is invariant
under Lorentz transforms. We have this as an exercise for the student to show
that is true. The following are hints: Show that dV 0 = (1 + �cos�) dV and that
r0 = r (1 + �cos�) and thus dV 0=r0 = dV=r.
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5.13 Lorentz Force Law

The 3-D vector form of the force law is

~F = q
�
~E + ~v�~B

�
(215)

We need to write this in 4-D vector form to show that it is Lorentz invariant. The
relativistic force lay must involve the particle velocity and the simplest form is linear
in the 4-D velocity. The 4-D vector form then would be

~F =
q

c

~~F � ~u; F� =
q

c
F��u

� (216)

To obtain the 4-D expression for the electromagnetic �elds we need second
rank tensors, i.e. F��.

Since we want the force F� to be rest-mass preserving, we have the requirement
that F�u

� = 0 and thus F��u
�u� = 0. Since this must hold for all u�, the F�� must

be antisymmetric.
A cartesian at-space second rank tensor has components Cij. The tensor is

the sum of a symmetric tensor Sij and an antisymmetric tensor Aij:

Cij =
1

2
(Cij + Cji) +

1

2
(Cij � Cji)

= Sij +Aij (217)

Sij = Sji; Aij = �Aji (218)

The property of being symmetric or of being antisymmetric is preserved under
orthogonal transformations.

Now construct the antisymmetric tensor in a generalized curl

F�� = 2�A� �2�A� = @�A� � @�A� = A�;� �A�;� (219)

Note that
F00 = F11 = F22 = F33 = 0

F23 =
@A3

@x2
� @A2

@x3
= (~r� ~A)x = Bx

Similarly, F31 = By, F10 = Bz.

F10 =
@A0

@x1
� @A1

@x0
=
@�

@x
� @Ax

@ct
= �Ex

and similarly F20 = �Ey and F30 = �Ez. So the full tensor is

F�� =

2
6664

0 Ex Ey Ez

�Ex 0 �Bz By

�Ey Bz 0 �Bx

�Ez �By Bx 0

3
7775 (220)
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F�� is the electromagnetic �eld tensor.
The contravariant form of the electromagnetic �eld tensor is

F �� =

2
6664
0 �Ex �Ey �Ez

Ex 0 �Bz By

Ey Bz 0 �Bx

Ez �By Bx 0

3
7775 (221)

One can raise and lower indices by use of the metric tensor.

F�� =
X


X
�

g�F
�g�� (222)

In 3-D Maxwell's equations are:

~r� ~B � 1

c

@ ~E

@t
= �

~v

c
=
~j

c
~r � ~E = �

~r�~E +
1

c

@ ~B

@t
= 0

~r � ~B = 0 (223)

Now we take the 4-D divergence of the electromagnetic �eld tensor

~2 � ~~F = ~j=c (224)

which reduces to the �rst two Maxwell equations. The continuity equation is simply

j�� = 0: (225)

Since there were actually two possible ways to unify the electric and magnetic
�elds into a single entity, we now de�ne the dual electromagnetic �eld tensor:

G�� =

2
6664

0 Bx By Bz

�Bx 0 �Ez Ey

�By Ez 0 �Ex

�Bz �Ey Ex 0

3
7775 (226)

The second set of Maxwell's equations can be simply written as

X
�

@G��

@x�
= 0 (227)

Or, if one does not wish to resort to the dual electromagnetic �eld tensor, then the
second set of Maxwell's equations can be simply written as

@�F � + @�F � + @F �� = 0 (228)

a generalized curl.
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5.14 Transformation of the EM Fields

One can derive the transformation of the electromagnetic �eld by using the Lorentz
force law ~F = q( ~E+ ~V� ~B) as a de�nition of the ~E and ~B (and by the transformation

of second rank tensors as shown below.) To derive the ~E and ~B requires using three
reference frames in order to see how both transform.

Do use the Lorentz force law we need a test electron or charge to probe the
force and thus how the �elds must transform. We consider the �eld acting on an
electron located at the origin of three reference frames in relative motion.

Electron velocity ~v in S
-

~v relative to So�
~V relative to S0�

Electron velocity ~u in S0
-

~u relative to So
�

Electron at rest in So
K
q

~Fo, ~Eo, ~Bo
~F 0, ~E0, ~B0~F , ~E, ~B

S0SSo

6

-

6

--

6

The electron is at rest relative to reference frame So, moving with velocity ~v
with respect to reference frame S, and moving with velocity ~u with respect to reference
frame S0. We arrange the coordinate systems so that the velocities all lie along the
x axes. Thus the relative velocity ~V of the frames S and S0 is given by the velocity
addition formula as

V =
u+ v

1 + uv=c2

We can write simple expression for the Lorentz force components in frames S,
S0, and So, respectively:

S S0 So
Fx = eEx F 0

x = eE0
x Fox = eEox

Fy = e(Ey � vBz) F 0
y = e(E0

y � uB0
z) Foy = eEoy

Fz = e(Ez + vBy) F 0
z = e(E0

z + uB0
y) Foz = eEoz

Note that in So the electron is not moving so that the magnetic �eld does not produce
a force.

The equations for the transformation of force (for u0x = 0) give

Fx = Fox F 0
x = Fox

Fy = Foy
q
1� v2=c2 F 0

y = Foy
q
1� u2=c2

Fy = Foy
q
1� v2=c2 F 0

z = Foz
q
1 � u2=c2

Then we have

Ex = Eox E0
x = Eox

Ey � vBz = Eoy

q
1� v2=c2 E0

y � uB0
z = Eoy

q
1 � u2=c2

Ez + vBy = Eoz

q
1� v2=c2 E0

z � uB0
y = Eoz

q
1� u2=c2
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We can see at once that Ex = E0
x. From the velocity addition law we have

v

c
=

u=c+ V=c

1 + (u=c)(V=c)

and thus
1q

1 � v2=c2
=

1 + u
c
V
cq

1� u2=c2
q
1� V 2=c2

Thus
Ey � vBzq
1� v2=c2

= Eoy =
E0
y � uB0

zq
1� u2=c2

so that "
Ey �

u+ V

1 + uV=c2
Bz

#
�
2
4 1 + u

c
V
cq

1 � u2=c2
q
1� V 2=c2

3
5 = E0

y � uB0
zq

1� u2=c2

If these equations are to hold true for all values of u, then since the terms which
contain u must be equal and those that do not must also be equal:

E0
y =

Ey � V Bzq
1 � V 2=c2

B0
z =

�(V=c)Ey +Bzq
1 � V 2=c2

Similarly by equating the expression for Eoz one �nds

E0
z =

Ez + V Byq
1� V 2=c2

B0
y =

(V=c)Ez +Byq
1� V 2=c2

This gives the transformation law for 5 of the six components of the
electromagnetic �eld. We are missing Bx since we started with a stationary electron
in frame So. This can be found by considering an electron moving at right angles to
Bx and recalling that the force is unchanged in the x direction. Thus B0

x = Bx.
Now do the derivation of �eld transformation from the transformation of a

second rank tensor and apply that to F��.

F 0
�� =

X
�

X
�

a��a��F�� (229)

applied to either the electromagnetic �eld tensor ~~F or its dual gives

E0
x = Ex B0

x = Bx

E0
y = (Ey � �Bz) B0

y = (By + �Ez)
E0
z = (Ez + �By) B0

z = (Bz � �Ey)
(230)
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5.15 The Equations of Motion for a Charge Particle

The 3-D Lorentz force law

~F =
d~p

dt
= q( ~E +

~v

c
� ~B) (231)

We can turn this into 4-D vector equation by �rst replacing dt = d� and 3-vector
velocity ~v by the 4-vector velocity ~u.

F� =
dp�

d�
= qF��u

� (232)

5.16 The Energy-Momentum Tensor

First a brief review to provide motivation for the study and understanding of tensors:
(1) Electromagnetism described by a tensor �eld (4 by 4)
(2) Gravity represented by a tensor �eld (4 by 4)
(3) elastic phenomena in continuous media mechanics (classical 3 x 3)
(4) metric tensor for generalized coordinates

First we found a 4-vector equation of motion for a single particle:

d~p2

d�
= ~F2

d~p

d�
= ~F

dp�

d�
= F � (233)

Next we found the equation of motion for a single particle in an electromagnetic �eld
as:

dp�

d�
= m0

du�

d�
= ~~F

��

u� (234)

Later we will �nd that the equation of motion for a single particle in a weak gravitation
�eld is

dp�

d�
= m0

du�

d�
=

1

2
�h��;�mou

�u� (235)

The last equation the second rank tensor h�� is obvious but there is another simple
second rank tensor there mou

�u�. This is an important tensor. The next paragraph
supplies a little more motivation to study this important and one of the simplest that
one could think to form.

In classical mechanics one has the concept that the integral of the force times
distance is the work done (energy gained) and that the gradient of the potential is
the force.

W = �E =
Z
~F � d~x ~F = �~rV (236)

All this points to the need to develop the same concept in 4-D.

�E =
Z
~F � d~x =

Z
d~p

dt
� d~x =

Z
d~x

dt
� d~p =

Z
~u � d~p (237)
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From the last part of the equality one �nds that the integral to get the \4-potential"
will involve p�u�. The tensor p�u� is labeled the energy-momentum tensor. We can
write out explicitly the tensor for a particle.

T �� = p�u� = mou
�u�

= moc
22

2
6664
1 �x �y �z
�x �2x �x�y �x�z
�y �x�y �2y �y�z
�z �x�z �y�z �2z

3
7775 (238)

since (u�) = c(1; �x; �y; �z).
The quantity, 2moc

2 = E, seems a bit strange but not so when we consider
a collection of particles or a continuum in density of material, �. � = 2�o since one
factor of  comes from the mass increase and another factor of  comes from the
volume contraction due to length contraction along the direction of motion.

T �� = �c2

2
6664
1 �x �y �z
�x �2x �x�y �x�z
�y �x�y �2y �y�z
�z �x�z �y�z �2z

3
7775 (239)

and now we see that the energy-momentum tensor components are the transport of
energy-momentum-component in �-direction into the �-direction.

Consider an interesting case: a large ensemble of non-interacting (elastic
scattering only) particles { an ideal gas. For an ideal gas, < �i >= 0 and < �i�j >= 0,
for i 6= j, and < v2x >=< v2y >=< v2z >, so that the energy-momentum tensor is
diagonal

T
��
ideal gas =

2
6664
�c2 0 0 0
0 � < v2x >

0 � < v2y >

0 � < v2z >

3
7775 =

2
6664
� 0 0 0
0 P

0 P

0 P

3
7775 (240)

where � is the full energy density due to the mass density, and P = � < vi >
2 which

is easily derived for an ideal gas (PV = nkT = nm < v2i >).
We can write a simple formula for the energy-momentum tensor for a perfect

uid in a general reference frame in which the uid moves with 4-D velocity u� as

T �� =
�
�0 + p=c2

�
u�u� � pg�� (241)

which reduces to the equation above in its rest frame.
We want the full generalized relation between the energy-momentum tensor,

T ��, and the 4-force to be:
~F = ~2 � ~~T (242)
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f� =
X
�

@T ��

@x�
�
X
�

T ��
;� � T ��

;� (243)

where the last term represents the repeated indices summation convention. One uses

;index indicates partial derivative with respect to xindex and repeated index to indicate
summation on that index to make the equations easier to write and view.

5.17 The Stress Tensor

Now we can consider the case of a medium or �eld that can have non-zero o�-diagonal
components. First it is good to review the concept of stress. Stress is de�ned as force
per unit area, (same a pressure which is a particularly simple stress),

Imagine a distorted elastic solid or a viscous uid such as molasses in motion.
Imagine a surface (conceptual/mathematical) in the medium (The surface can and
will be curved or distorted.) with a plus and a minus side and unit normal vector for
every point on it. A di�erential area element dA, with normal n̂ will exert forces on
each of its sides. The forces are equal and opposite by Newton's second law, since
the mass of the element is zero. ~Ftotal = m~a = 0, so ~F+ on � + F� on + = 0

The force per unit area on the small element of the surface is the stress. It is
a vector, not necessarily known. It underlies the dynamics of continuous media.

Consider a small piece of material at the surface

n3

dz

dy

dx
~F(3) = ~T(3)dxdy

~F(1) = ~T(1)dydz

~F(2) = ~T(2)dxdz

n̂2

n̂1
��	

6

�
��3





�

��
��1
-

��

��

��

��

We de�ne stress which stretches as positive and stress which compresses as
negative.

Clearly each of the three axes has a vector force associated with it so that we
have a second rank tensor �eld associated with the stress. We de�ne the stress tensor,
Eij � T(i)j. Normal Stress is when the vector T(i) is co-directional with the normal
�n̂(i).

If Eij = C�ij, C is the hydrostatic pressure, if C > 0.

Simple Tension Consider Eij = Cn̂in̂j , then T(j) =
~~Eij � n̂i = Cn̂in̂j � n̂i = Cn̂j

thus is co-directional with �n̂i. If m̂i has directional orthogonal to ni, then
~T(j) = Cn̂in̂j � m̂i = 0.

If C is negative (C < 0), the stress is simple compression.

Shearing Stress is speci�ed by
~~Eij = C(n̂im̂j + n̂jm̂i)
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We will see by example the following generalization: A simple tension

in one direction and a single compression along an orthogonal direction

is equivalent to a shearing stress along along shearing stress along the

direction bisecting the angle between the two directions.

In anticipation of later integration to 4-D we can call the stress tensor
Eij = Tij � Force per area on the surface along the i-axis along the surface with
normal in the j-direction by the material on the side with smaller xj. Since action
must equal reaction �Tij = force by material on the side of larger xj.

Now return to our in�nitesimal cube of the medium, with sides lined up along
the cartesian coordinate planes:

x x + dx

y

x

z

�
�

�
��=

-

6

dz

dy

dx
��

��

��

��

The force on the back face is

Fx(x) = +Txx(x)dydz = Txx(x)dydz (244)

The force on the front face: Fx is exerted on it toward inside in the x-direction is

Fx(x+ dx) = �Txx(x+ dx)dydz = �
 
Txx(x) +

@Txx

@x
dx

!
dydz (245)

The net force on the cube is Fx is exerted on it toward inside in the x-direction is

Fx = �@Txx
@x

dxdydz (246)

If Txx > 0, inside pushes on the outside, pressure: compressive stress. If
Txx < 0, inside pulls on the outside, tension: tensile stress.

Txy and Tyx are shear stresses.
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Txy
6

,,

x x + dx

y

x

z

�
�

�
��=

-

6

dz

dy

dx
�� ��

��

Similarly to the treatment above the net force in the y-direction, Fy, on the
front and back face is

Fy = �@Txy
@x

dxdydz (247)

and

Fz = �@Txz
@x

dxdydz (248)

Thus the total Fx on the material inside is

Fx total = �
 
@Txx

@x
+
@Tyx

@x
+
@Tzx

@x

!
dxdydz

Fi = �
3X
i=1

@Tij

@xi
dV (249)

Now consider Fy on the two faces perpendicular to x and Fx on the two faces
perpendicular to y as exerted from the outside.

Fy = �TxydAyz

Fy = +TxydAxz

Fy = +TyxdAyz Fy = �TyxdAyz

-

�

?

6

The sign changes because from the surface the force is toward the inside. Now
calculate the net torque. The two x faces have a counter-clock-wise torque:

torque from x� face = Force � moment arm = (Txydydz)dx=2 (250)

torque from y� face = �(Tyxdxdz)dy=2 (251)
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To the net torque is

� = (Txy � Tyx)dxdydz=2 = I
d!

dt
(252)

where I / mr2 � �(dxdydz)r2 is the moment of inertia and d!=dt is the angular
acceleration so that

Txy � Tyx / �r2
d!

dt
(253)

as we consider an in�nitesimal cube, r2 ! 0 so that

Txy = Tyx (254)

which means the stress tensor must be symmetric. The stress tensor is symmetric, so
only six independent components.

5.18 Consideration of Shear

Simple shear displacement is like sliding a deck of cards.

-
,
,
,

,
,
,

A pure shear displacement keeps the center at the same place and is what our
four forces try to do:

�
�
�
�
�
�

�
�
�
�
�
�

�������

�������

?

�

6

-

If the little cube is cut di�erently, e.g. cut at 45� to the previous cube, a
di�erent e�ect occurs:

�
�

�
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Thus pure shear is a superposition of tensile and compressive stresses of equal
size at right angles to each other.

Let us follow our example of shear a little further:

Tij =

2
64 0 Txy 0
Txy 0 0
0 0 0

3
75 (255)

We can look at the transformation properties by considering on the 2 � 2
portion. Now rotate the axes 45�. How do the tensor components change?

S0ij =
X
k

X
l

aikajlSkl (256)

where aik is the matrix for the coordinate transformation, rotation:

�
x0

y0

�
=
�
a11 a12
a21 a22

� �
x

y

�
=
�
cos� sin�

�sin� cos�

� �
x

y

�
(257)

For 45�, the rotation matrix is:

[Aij] =

" 1p
2

1p
2

� 1p
2

1p
2

#
(258)

so that

T11 = (a11)
2T11 + a12a11T21 + a11a12T12 + a12a21T22

=
1

2
(T11 + T21 + T12 + T22) = T21 = T12 (259)

T12 = a11a21T11 + a11a22T12 + a12a21T21 + a12a22T22

=
1

2
(�T11 + T12 � T21 + T22) = 0 (260)

T22 = a21a21T11 + a21a22T12 + a22a21T21 + a22a22T22

=
1

2
(T11 � T12 � T21 + T22) = �T21 = �T12 (261)

So that for the 45� rotation we have

T 0ij =
�
T21 0
0 �T21

�
(262)

Thus we have shown that a pure shear stress rotated by 45� is equivalent to equal
amounts of tension and compression stress at right angles to each other with the pure
shear bisecting the angle they make.
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5.19 Electric and Magnetic Stress

In this section we see that using the Faraday lines of force concept that both the
electric and magnetic �eld lines can be under tension or compression and thus by the
argument just above under shear stress.

First consider two opposite charges, magnitude q, a distance 2d apart, located
symmetrically opposite the origin on the x-axis. The force between them is F =
q2=(4d2) according to the Coloumb law. We can imagine putting a metal plate (perfect
conductor) in the y� z plane and know that an image charge will form and have the
same force on it and thus the plate. This makes sense in terms of the Faraday lines
of force. We can calculate the total integrated mean square value of the electric �eld
in the y � z plane.

s s
�������

dd

r�

HHHHHHH

y

x-

6

d
s s

-q +q

z

y

x�
�
�

�
��=

6

-

The only non-zero component is Ex = 2qcos�=r2 = 2qd=r3 where r2 = �2d2.

Z
E2
xdA = 4q2d2

Z 1

0

2��d�

(�2 + d2)3
= 4�q2d2

Z 1

�=0

d[�2 + d2]

(�2 + d2)3
= 4�q2d2

1

2(�2 + d2)2
j�=0�=1 =

2�q2

d2

(263)
The actual force between the charges is q2=(4d2), so that the force per unit

area in �eld must be E2

8�
which is a tensile stress and is along the lines of electric �eld.

Now consider the same situation but with both charges having the same sign.
In this case the lines bend and become tangent to the y � z plane and are clearly in
compression. By symmetry the only non-zero component of the electric �eld is that
that goes radially (in the �̂ direction).

E2
� =

2q

d2
sin� =

2q

d2
�

r
=

2q�

r3

where E2
� = E2

y+E
2
z . Again we can compute the total integrated mean square electric
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�eld strength in the y � z plane:

Z
E2
�dA = 4q2

Z 1

0

�2

r6
2��d� = 4�q2

Z 1

d2

(r2)� d2

(r2)3
d(r2) = 4�q2

"
1

r2
� d2

2(r2)

#
jd21 =

2�q2

d2

(264)
Thus again we �nd the compressive stress perpendicular to the electric �eld lines is
E2=8�.

Consider another simple case of tension along the lines of electric �eld, which
is the familar simple capacitor.

~E
-

-
-
-

-

-
-

-
+

+
+

+
+

+
+

+

-

-

-

-

-
-
-
--

-
-
-

-

-

-

-

+

+
+

+
+

+
+

+
-

-
-

-

-
-
-

-

~E

Clearly the lines of force, electric �eld lines are under tension. We can consider
the charge on each of the capacitor faces to have a surface charge density equal to
�. Then by Gauss's law we can construct the usual pill box which has a uniform
electric �eld passing though the face with area A and not on the sides or outside face.
Thus in Gaussian units 4�� = E (in Heavyside-Lorentz units, � = E) and the force
between the plates per unit area is

F

A
=
E�

2
=
E2

8�
(265)

(or in Heavyside-Lorentz units, E2=2).
Now we turn to magnetic stress. First consider a very long solenoid or a current

sheet.

Integral Path

~F

~F

?

6~j�

�

�

�
~B = 4�

c

~j

`

---
-

---
-
-

-
-
--
-
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The magnetic �eld is parallel to the solenoid and

Z
~B � d~̀= 4�

c
~j

so that B = 4�j=c`. The Lorentz force on the current is

~F = q(~v�~B) = ~j�~B

The force per unit area is equal to the average of the magnetic �eld at each edge of
the solenoid or for an ideal solenoid this is half the internal magnetic �eld. We then
have pressure stress

Pmagnetic =
cB2

8�
(266)

The factor c depends upon the units one uses. Thus we see that like the electric �eld,
the magnetic �eld can have compression perpendicular to the magnetic �eld lines.

Now we observe tension along magnetic �eld lines. Consider two magnets
placed with poles near each other. If the poles are opposite, the magnets are attracted
{ tension in the direction of the lines. If the poles are the same, the magnets are
repulsed { compression perpendicular to the lines.

We can see that this reduces to exactly the same case as for the charges
calculated above by considering two long magnets.

NN S

S S

S

NN

As the magnets get longer and longer, each pole acts exactly as if it is an
isolated charge and the math is the same.

Now we see that we need to have a momentum-energy tensor or more properly
stress-energy tensor for electromagnetism.

5.20 Stress-Energy Tensor

We need to generalize this to 4-vectors and Lorentz invariance. This will require the
use of second rank tensor - the stress-energy tensor.

In relativistic mechanics for continuous media the energy-momentumor stress-
energy tensor, T ��, is usually de�ned as:

T ij = �uiuj � Eij; T i0 = T 0i = �ui; T 00 = � (267)

where � is the density and Eij is the Cartesian stress tensor usually de�ned as
the tensor that describes the surface forces on a di�erential cube around the point
in question. The normal surface force is pressure but there can be terms for
tension/compression and shearing stress.
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Then the equations of motion of a continuous medium is

X
�

@T ��

@x�
� T ��

;� = f� (268)

where f� is the 4-force density. That is the net force on material in a volume V is

F � =
Z Z Z

V
f�d3V =

Z Z
surface

T ��dA� (269)

where the last equality comes from invoking Stoke's theorem.
In the case of electromagnetism in the 3-dimensional form the parallel

equations are

~F =
Z Z Z

V

�
~E + ~v � ~B

�
�d3V =

Z Z Z
V

�
� ~E +~j � ~B

�
d3V (270)

Thus the force density ~f is
~f = � ~E +~j � ~B (271)

Now we want to replace � and ~j by the �elds via Maxwell's equations.

� = ~r � ~E; ~j = ~r� ~B � 1

c

@ ~E

@t

Thus

~f = (~r � ~E) ~E + (~r�~B � 1

c

@ ~E

@t
�~B

Through suitable use of Maxwell's equations this can be recast to

~f = (~r � ~E) ~E � ~E�(~r� ~E) + (~r � ~B) ~B � ~B�(~r�~B)� 1

2
~r
�
E2 +B2

�
� 1

c

@

@t
( ~E�~B)

This is not a particularly elegant expression but is symmetrical in ~E and ~B. The
approach can be simpli�ed by introducing the Maxwell Stress Tensor,

Tij =
�
EiEj �

1

2
�ijE

2

�
+
�
BiBj �

1

2
�ijB

2

�
(272)

For example the indices i and j can refer to the coordinates x, y, and z, so that the
Maxwell Stress Tensor has a total of nine components (3 � 3). E.g. with �0 and �0
explicitly stated instead of the units we usually use with c

Tij =

2
6664

1
2
�0
�
E2
x � E2

y � E2
z

�
+ 1

2�0

�
B2
x �B2

y �B2
z

�
�0 (ExEy) +

1
�0
(BxBy)

�0 (ExEy) +
1
�0
(BxBy)

1
2
�0
�
E2
y � E2

z � E2
x

�
+ 1

2�0

�
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And thus the force per unit volume is then

~f = ~r � ~~T � 1

c2
@~S

@t
(273)

And by Stoke's Law

~F =
Z Z

surface

~~T � d ~A� 1

c2
d

dt

Z Z Z
V

~Sd3V (274)

This turns out to be a much more compact equation in 4-D vector notation.
For 4-dimensions the force law is f� = F ��j�.
We want the full generalized relation between the energy-momentum tensor,

T ��, and the 4-force to be:
~F = ~2 � ~~T (275)

f� =
X
�

@T ��

@x�
�
X
�

T ��
;� � T ��

;� (276)

where the last term represents the repeated indices summation convention. One uses

;index indicates partial derivative with respect to xindex and repeated index to indicate
summation on that index to make the equations easier to write and view.

For example,

fx = Txx;x + Txy;y + Txz;z
forcex = �pressure + �shear stress (277)

For electromagnetism the force equation is

f� = F��j� = F��F��;� (278)

since F��;� = j� . Thus we have

T��;� = F��F��;� (279)

A tensor satisfying this equation is

T�� = � 1

4�

�
F��F

�
� �

1

4
���F��F

��

�
(280)

T �� =
1

4�

�
F ��F �

� �
1

4
���F ��F��

�
(281)

T �� = � 1

4�

�
F ��F �

� �
1

4
g��F ��F��

�
(282)

First consider the Maxwell stress tensor,

Tij = �0

�
EiEj �

1

2
�ijE

2
�
+

1

�0

�
BiBj �

1

2
�ijB

2
�

(283)
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Txx =
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(284)

Txy = �0 (ExEy) +
1

�0
(BxBy) (285)

and so on. Bear in mind that the stress tensor is symmetric. It is also possible to
add some additional terms.

T 00 =
1

8�

�
E2 +B2

�
+

1

4�
~r � (� ~E) (286)

T 0i =
1

4�

�
~E� ~B

�
i
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1

4�
~r � (A1

~E) (287)

T i0 =
1

4�

�
~E� ~B

�
i
+

1

4�
~r�(� ~B)� @

@x0
(�Ei) (288)

The added terms uses the free �eld ~j = 0 Maxwell equations and included for
completeness. If the �elds are reasonably localized, then T 00 is the �eld energy
density, and the T 0i = cP i

f ield is the components of the �eld momentum density or

the Poynting vector ~S. Thus a simpli�ed form is

T�� =

"
1
8�
(E2 +B2) ~S

~S Maxwell Stress Tensor

#
(289)
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5.21 Bopp Theory

In classical electromagnetic theory there are two additional factors that must be taken
into account: (1) the �nite speed of light which means that the charge distribution
can change and the change only propagates at the speed of light and (2) the 1/r form
of the potential means that any point charge has in�nite energy. To take into account
the motion of charges one must end up using retarded potentials. In 3-D one has:

Ai(t; ~x1) =
1

c

Z
ji(t� r12=c; ~x2)

r12
dV2 (291)

Bopp suggested a simpler form of the 4-vector potential which he thought
might handle both problems:

A�(~x1) =
Z Z Z Z

j�(t2; ~x2)f(s
2
12)dV2dt2 (292)

Where f(s212) is a function which is zero every where but peaks when the square of
the 4-vector distance s212 between the source (2) and the point of interest (1) is very
small. The integral over f(s212) is also normalized to unity. The Dirac delta function
is the limiting case for f(s212). Thus f(s

2
12) is �nite only for

s212 = c2(t1 � t2)
2 � r212 � ��2 (293)

Rearranging and taking the square root

c(t1 � t2) �
q
r212 � �2 � r12

s
1� �2

r212
� r12(1 �

�2

2r212
) (294)

So

(t1 � t2) �
r12

c
� �2

2cr12
(295)

which says that the only times t2 that are important in the integral of A� are those
which di�er from the time t1, for which one is calculating the 4-potential, by the
delay r12=c ! { with negligible correction as long as r12 � �. Thus the Bopp theory
approaches the Maxwell theory as long as one is far away from any particular charge.

By performing the integral over time one can �nd the approximate 3-D volume
integral by noting that f(s212) has a �nite value only for �t2 = 2� �2=2r12c, centered
at t1 � r12=c. Assume that f(s212 = 0) = K, then

A�(~x1) =
Z
j�(t2; ~x2)f(s

2
12)dV2dt2 �

K�2

c

Z
j�(t� r12=c; ~x2)

r12
dV2 (296)

which is exactly the 3-D version shown above if we pick K so that K�2 = 1.
This manner of thinking eventually leads one to the interaction Lagrangian as

a the product of the two currents (electrical, matter, strong, weak, gravitational).
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5.22 The Principle of Covariance

The laws of physics are independent of the choice of space-time coordinates.
Special Relativity applies this only to the choices of Euclidean (pseudo-

Euclidean), non-rotating coordinate moving with constant velocities with respect to
each other. That is by de�nition inertial frames.

General Relativity applies this to all conceivable space-time coordinates:
rotating, accelerating, distorting, non-Euclidean, non-orthogonal, etc.

Einstein said that this principle is an inescapable axiom, since coordinates are
introduced only by thought and cannot a�ect the workings of Nature.

Therefore the Principle of Covariance cannot have Physical Content to
determine the laws of any part or �eld of physics.

Tensors are essential because all tensor equations of proper form are manifestly
covariant; their functional form does not change when coordinates are changed.
(Proper form means that both sides of the equation result in tensors of the same
rank and, if the equation matches the classical limit formula, then it is the only
correct form. get the stu� in these parentheses, precisely right.)

The form of a tensor equation provides no guide for selecting a particular
\�xed" or \at rest" coordinate system. However, its content may provide this.

Covariance Language has heuristic invariance:
(1) It guides in proceeding, without telling where to go.
(2) It helps to prevent errors from staying with particular coordinates (through
oversight or error).
(3) One should take as a �rst approximation to physical laws those which are simple

in tensor language, but not necessarily simple in a particular coordinate system.
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6 POINT OF VIEW

In this chapter we consider relativistic e�ects from di�erent points of view. In
essentially all the cases we have done before, we have assumed that we had a complete
reference frame of meter sticks and clocks so that we could determine lengths and
times at any place in space-time. This I refer to as the physicist's god-like view
provided by his reference frame and ancillary tools. This concept of reference frames
comes to us from Galileo and Newton.

Most mere mortals, such as astronomers and individuals, have more limited
access to data about remote objects. In general, especially for astronomy, the observer
either sits at a point in space-time and images light coming to his instrument { eye,
telescope, camera, etc. { or sits at a point in space and observes the light arriving as
a function of time.

The result of being limited to a single point of view, instead of the physicist's
god-like plan view is to observe very di�erent relativistic behavior than we have
considered so far. One can observe cases of a moving clock running faster. Radio
astronomers observe many objects moving superluminally (that is with velocities
faster than light), and fast moving objects appear very di�erently than a resting
object at the same place. Sometimes one can not see the front of an approaching
object but can see the back.

We consider some of these e�ects in the following sections.

7 The Relativistic Doppler E�ect

From the point of view of a single observer con�ne to a location in space, a moving
clock can run either faster or slower than an identical clock at rest with respect to the
observer depending upon its velocity (direction and speed of motion). We consider
the case of a clock that is a light source with a particular frequency and work out the
relativistic Doppler shift. The frequency can be considered the beats of the clock.

We work the problem out by considering two di�erent inertial frames and use
the Lorentz transformations in order to determine what a single-place observer would
see.

7.1 Ray Optics Approach

First, go to the frame S0 where the source is at rest and emits light at frequency
�0 = �o. Now consider a pulse light going in the direction �0 relative to the x0-axis.
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Now consider the frame S, where the source is moving in the x direction with
velocity (speed) v, and consider the path of the light in this frame. We can use the
Lorentz transformations to calculate the location of a light pulse emitted at time
t0 = 0 and trace its path as a light ray.

x =
x0 + vt0q
1� v2=c2

=
ct0cos�0 + vt0q

1� v2=c2
=
ct0 (cos�0 + v=c)q

1� v2=c2

y = y0 = ct0sin�0

By taking the ratio of y over x when can �nd tan�

tan� =
y

x
=

sin�0

cos�0 + v=c

q
1� v2=c2 =

1



sin�0

cos�0 + v=c
(297)

This is the full relativistic aberration of light formula derived by ray optics argument.
This is the same result as found using the Lorentz contraction and ether approach.

Now using the Lorentz transform for t and then t0 we can derive a formula for
the relative rate at which clocks appear to run.

t =
t0 + v
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c
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Similarly and symmetrically
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cos�

�
q
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�

Taking the derivative of t with respect to t0 and vice versa and inverting we �nd the
relations

dt
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cos�0
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c
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���1
(298)

Note that it matters whether one uses the angle � or �0 because of the aberration of
angles. The frequency of clock ticks would be:

� = �0
�
1 +

v

c
cos�0

�
= �0

�


�
1� v

c
cos�

���1
(299)
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7.2 Phase of Plane Wave Approach

Now we can calculate the direction and wavelength or frequency of light observed by
considering the phase of a plane wave traveling in the same direction �0 in the frame
S0 where the light source is at rest. Remember the relationship between wavelength
�, frequency �, and the speed of light c: �o�o = c

� = 2�

"
�ot

0 � x0cos�0 + y0sin�0

�o

#

apply the Lorentz transforms expressing x0, t0 in terms of x and t and y0 = y to obtain:

� = 2�

"
�o

�
t� v

c2
x

�
� cos�0

�o
 (x� vt)� sin�0

�o
y

#

Now in the laboratory or observer rest frame coordinates

� = 2�

"
�t� cos�

�
x� sin�

�
y

#
= 2�

"
�

�
t0 +

v

c2
x0
�
� cos�

�
 (x0 + vt0)� sin�

�
y

#

Since we realize that the phase must be the same in the two frames, we can compare
the previous equations and obtain the coe�cients for t, x, and y which must be the
same. I.e. for t

� = �o +
cos�0

�o
v = �0

�
1 +

v

c
cos�0

�

Collecting the coe�cients for t0 yields

�o = �

�
1 � v

c
cos�

�

These are the relativistic Doppler e�ect for frequency

� = �0
�
1 +

v

c
cos�0

�
= �0=

�


�
1� v

c
cos�

��
(300)

These are the same equations we got for the ratio of clock running rates using the
geometrical ray tracing.

We can also �nd aberration of angles, started by setting the coe�cients for x
and y equal from the two equations for the phase.

cos�

�
= 

cos�0

�o
+ �o

v

c2

sin�

�
=
sin�0

�o

where we make use of the relationship �0�0 = �o�o = c = ��. The ratio of these
equations gives

tan� =
sin�0

 (cos�0 + v=c)

is the same aberration from ray optics above. This is natural since one is geometrical
(ray) optics and the other wave but rays propagate normal to wave fronts.
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7.3 Special Cases

7.3.1 Doppler shift parallel to direction of observation

Consider the special case when the source is approaching or receding directly. That
is to say that the velocity of the source is parallel to the line of sight. Then both
versions of the formula yield the following relationship

� = �0
s
1 + �

1� �

This is left as an exercise to the reader to show this and to show that the equation is
exactly symmetrical on reversal of the frames

�0 = �

s
1 + �0

1 � �0
= �

s
1� �

1 + �

7.3.2 Doppler shift perpendicular to direction of observation

The case of motion perpendicular to the direction of observation (in the observation
frame). is quite simple:

� = �0= �0 = �

This is called the transverse Doppler shift and is simply a result of time dilation as
one would anticipate.

7.3.3 Fresnel's Velocity Dragging Coe�cient

u = u0 + vcos�(1� u02=c2) = c=n+ �vcos�

8 Superluminal

Radio astronomers routinely observe objects that they classify as superluminal.
Operationally this means that a radio astronomers uses his radio telescope (often
an interferometer array) to make an image of an object at multiple times and the
time rate of change of the angular diameter of the astronomical object times the
estimated distance to the object gives a result that implies a velocity transverse to
the line of sight which is greater than the speed of light, sometimes by up to �ve
times.

There are a number of potential explanations for these observations but nearly
all can be ruled out easily by companion observations.

Consider the following scenario where the source is at rest with respect to the
observer (radio astronomer) and has sent out an relativistic expanding shell of light
emitting matter.
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A radio astronomy telescope images the incoming wavefront which means that
it accepts photons which have arrived at the telescope at the same time. Hence we
need to �nd the locus of points on the expanding wave front which have the same
total travel time to the radio telescope. This means that the sum, ttotal, of the time
t1 = R=v taken for the point on the expanding sphere to reach the point at radius
R = vt1 where it emits the light plus the time t2 = (D � Rcos�)=c it takes light to
travel from the point of emission to the radio telescope. Note that D is the distance
from the original expanding source to the radio telescope.

ttotal = R

 
1

v
� cos�

c

!

R =
vt

1� �cos�

note that for � � 1, this radius is R ' vt(1 + �cos�).
Note also that this is an alternate de�nition of an ellipse with eccentricity

e = �. Usually an ellipse is geometrically de�ned a the locus of points for which
the sum of the distance from two points is a constant. However, a more general
de�nition of a conic section is the locus of points whose distance between a point and
a line, called the directrix (in this case the wavefront), is in a constant ratio e. In
this case e = v=c. If e is less than 1, the resulting �gure is an ellipse. If e is equal
1, the resulting �gure is an parabola. If e is greater than 1, the resulting �gure is a
hyperbola. The eccentricity e of an ellipse varies between 0 and 1 and the value of e
indicates the degree of departure from circularity. (Focus is at a distance of ae from
the center and the directrix is at a distance a=e from the center of the ellipse.)

The apparent diameter set by the symmetric pair of such points is twiceRsin�.

Diameter = 2Rsin� = 2vt
sin�

1� �cos�

The velocity perpendicular to the line of sight is

v? =
vsin�

1� �cos�
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We can �nd the maximum apparent diameter (still assuming the expanding shell is
opaque and emitting light) by taking the derivative of the diameter with respect to �
setting that to zero and �nding the maximum apparent diameter at time to.

dDiameter

d�
= 2vt

 
cos�

1� �cos�
� �sin2�

(1 � �cos�)2

!

=
2vt

(1� �cos�)2
(cos� � �)

The maximum clearly occurs at

cos� = �; sin� =
q
1� �2; � = cos�1�

At the maximum

R =
2vt

1 � �cos�
=

2vt

1 � �2
= 2vt

The diameter is then

Diameter = 2vt
sin�

1� �cos�
= 2vt

p
1 � �2

1� �2
=

2vtp
1� �2

= 2vt

v? = 2v

The subtended angle is ' 2vt=D and the apparent velocity is  times the expanding
sphere velocity.

The most visible radio objects are double-lobe radio sources which have back-
to-back relativistic jets. In practice one generally only able to measure well relativistic
jet that is coming towards the observer because the Doppler e�ect both changes the
observed temperature and intensity. The intensity of the portion coming towards
the observer is typically increased by the factor 8 and the portion moving away
decreased by the same factor. See the following exercise:

8.1 Superluminal Motion Exercise

Astronomers observe a large number of radio sources that move with apparent
superluminal speed. That is the rate of change of angular separation between
components times the distance to the radio source gives a velocity well in excess of the
speed of light (vobserved = D � d�=dt). Consider the following problem and diagram
to help understand how an astronomer could measure apparent superluminal speed,
if there is a relativistic beam coming from the source.
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Neglect the source (host galaxy) motion relative to the observer and consider
the motion of only a single blob on a radio jet. The blob moves at velocity v with
respect to the galactic nucleus (and observer) beginning at time t = 0. Also assume
that the blob and nucleus continuously emit radio waves so that they can be observed.

Consider the radio emission received as a function of time by the observing
radio astronomer very far (distance D) away. Show that the observer sees the blob
coincident with the galaxy source at time t0 = D=c corresponding to t = 0. Show
also that the observer sees the blob with transverse displacement vt sin� from the
galactic nucleus at the time

tr = t+ (D � vt cos�)=c

Show that the elapsed time for the observer was

tr � t0 = t(1� �cos�)

where � = v=c.
The apparent transverse velocity of the blob relative to the nucleus

vapparent�transverse equals the transverse displacement divided by the time di�erence
observed for the displacement to occur. Show that this leads to the formula:

�apparent�transverse =
�sin�

1 � �cos�

Plot this formula for the following values: � = 0:5; 1 (a special case) and  =
2, 3, 4, 5, 7, 16.

Show that the maximum transverse velocity happens for cos� = � (and thus
sin� =

p
1� �2 = 1=), as derived in class for an expanding spherical shell, and that

the maximum apparent transverse velocity is

�apparent�transverse�max = �=
q
1� �2 = �

and that your graphs agree with this.
Note that for the critical angle and  >> 1, the transverse speed is roughly

vapparent�transverse�max � c.
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8.2 Too Rapid Time Variability

The minimum size for an astronomical object is often estimated by use of our earlier
�nding that no causal impulse can travel with a speed faster than the speed of light.
Thus if an object is observed to vary its brightness very signi�cantly in a given time
period �t, then it must be no larger than d = �t in extent. This is a good rule for non-
relativistic objects. However, if the object, e.g. a jet, is moving towards the observer
with relativistic speeds, then this can be compressed by a factor (1+�cos�0)). which
can be as much as 2object.

This e�ect has been observed (R. A. Remillard, B. Grossan, H. V. Brandt,
T. Ohashi, K. Hayashida, F. Makio, & Y Tanaka, Nature 1991 vol 350 p 589-592)
in the rapid variability of an energetic X-ray are in the quasar PKS0558-504. The
quasar X-ray ux was observed to increase by 67% in three minutes while there was
no signi�cant change in the spectrum. Since we know the mass of the black hole from
the limit of accretion e�ciency, we know it's size. From the minimum (light) travel
time across the source, we know the minimum variability time scale. The observed
time is shorter, by about a factor of 16; therefore, we must have relativistic beaming.

Another interesting example of variability, however, is the time dilation of
supernova light curves. Nearby Type 1A supernova are observed to have a very
standard brightness and time dependence of the light curve. (This can be made even
a tighter standard by the correlation between the intensity and light curve width in
time.) When observed at great distances, the light from a Type 1A supernova is
observed to be reddened by an amount that is consistent with a Doppler frequency
shift and the light curve time taken is stretched by the same amount predicted by the
relativistic Doppler shift formula. Most observed distant supernova have frequency
shift factors ranging from 1.2 to 1.9. As we will see later this is evidence that the
Universe is actually expanding and one can understand this stretching from a General
Relativistic point of view also.

9 Appearance of Rapidly Moving Objects

Surprisingly, if an observer looks at or photographs a small fast-moving object (� � 1),
which approaches him at even a relatively small angle, he cannot see the front of
the object but can see the bottom and back. Likewise, it is impossible to see the
Lorentz-Fitzgerald contraction by this technique. Instead of looking shortened along
the direction of motion, an object will appear rotated. This is a combined e�ect of
the aberration of light and the fact that our instruments (eye and camera) use the
incoming wavefront from the object.

In 1959 James Terrell (J. Terrel 1959 Phy. Rev. 116, 1041) realized that
the visual appearance of an object would moving at high speeds would not reveal the
Lorentz contraction in the direction of motion as commonly expected. That same year
Roger Penrose (R. Penrose 1959 Proc. Cambridge Philosophical Soc. 55, 137) proved
that a sphere would always appear to be a sphere rather than a Lorentz-contracted
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ellipsoid. These and some other results were brought to physicists' general attention
by a Physics Today article of Victor F. Weisskopf (1960).

The key point is that when we see of photograph an object, we record light
quanta (wavefronts) emitted by the object, when they arrive simultaneously at the
retina or at the photographic �lm. This implies that these light quanta (portions
of the wavefront) were not emitted simultaneously by all points of the object. The
points further away have emitted their part of the picture earlier than the closer
points of the object. Hence, if the object is in motion, the eye or the camera gets
a \distorted" picture of the object, since the object has been at di�erent locations,
when the di�erent parts of it have emitted the light seen in the picture.

In special relativity, this distortion has the remarkable e�ect of canceling the
Lorentz contraction so that small solid-angle objects appear undistorted and only
rotated.

9.1 Appearance of a Moving Stick

We do a very simple case �rst. Consider a moving stick of length `o = `0 in its rest
frame S0 which is aligned with the x0 axis. In frame S where you the observer is
idealized as a point at the origin which can take photographs. In frame S the stick

has length ` = `o= = `o
q
1� v2=c2 and is moving with velocity +v along the x axis.

Consider the junior physics lab experiment where the student is asked to
determine the apparent length of the stick from a point the center of the laboratory
frame. Student A - Jim Photographer - sets up a camera and a self-illuminated stick
and his partner, Student B - Lena Timer sets up a radar or laser ranger and a meter
stick with retro-reectors on each end.

9.1.1 Sell-Illuminated Stick

First consider the stick as a cartoon meter stick - a frame which de�nes the edges of
the meter stick and the frame is glowing. The rest of the meter stick is transparent
(not there). A view or photograph from the center of the frame S shows one rectangle
(outline of far end) inside another (outline of the near end) and the corners of the two
rectangles connected by lines (edges of the length of the cartoon stick). If the stick
were not moving, the relative size of the rectangles is set by the ratioD=(`+D) of their
respective ends distances from the origin. But the stick is moving, thus contracted,
but also the light from the more distant end must start toward the camera sooner
than the light from the near end in order to arrive at the camera at the same time.
This second e�ect is present classically and causes distortions in pictures of rapidly
moving objects.

Consider �rst the stick moving toward (approaching) the origin. The light
from the far end of the stick must catch up with the front end of the stick to continue
on with the light just then emitted from the front end of the stick. In the approaching
direction the light must travel the length of the stick plus the distance the stick has
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moved from the time the light leaves the far end of the stick until the time it reaches
the front of the stick.

distance light travels = stick length + distance moved

c�t1 = ` + v�t1

�t1 =
`

c� v

`a = ` + v�t1 = `

�
1 +

v

c� v

�
= `

1

1 � �
= `o

s
1 + �

1 � �

Thus the stick appears longer even though it is length contracted.
When the stick is receding, the light leaving the far end (now the front of the

stick) must reach the near end (now the back of the stick) at the time the light leaves
the near end of the stick. So the light must, once again be emitted �rst from the far
end of the stick, but it has to travel less distance to the front because the stick is
moving towards the light.

distance light travels = stick length � distance moved

c�t1 = `� v�t1

�t1 =
`

c+ v

`a = ` � v�t1 = `

�
1� v

c+ v

�
= `

1

1 + �
= `o

s
1 � �

1 + �

Thus the apparent length is now shorter as the stick recedes into the distance. Student
A takes a lot of photographs and measures distances and ratios �nally he plots up
the apparent length as a function of position and �nds:

Radar

Self-Illuminated

` = `o
q

1��
1+�

` = `o
q

1+�
1��

B

�
�
�
�
�
�
�

A

@
@
@
@
@
@
@

` = `o
p
1 � �2

log(`a)

x-

6
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9.1.2 RADAR or LIDAR-Illuminated Stick

Student B knows measuring times is easy and already has her results plotted. In her
apparatus the radar or laser pulse �rst hits the near end of the stick and reects back
to her receiver where she records the time. The pulse then reects from the far end of
the moving stick and returns to her receiver and she records the time. The di�erence
in times divided by 2c gives her the apparent observer-illuminated stick length.

We can calculate the extra time to get to the far edge (back edge of approaching
stick) and �nd the the light pulse has to travel less than the laboratory length of
the stick because the stick has moved forward to meet it. It is just the symmetric
opposite case of the receding self-illuminated stick. The radar apparent length of an
approaching stick is

`a = `o

s
1 � �

1 + �

For the receding stick the light going to the back edge to reect has to travel the
length of the stick plus the distance the stick has traveled and so the radar apparent
length of the receding stick is

`a = `o

s
1 + �

1 � �

which is longer than the apparent length of the approaching stick.
Who is right? They both are. This is an illustration about the care one needs

to take in de�ning the question.
Because Student B's technique was so much faster, she had plenty of time after

taking the data to puzzle over the results and realizes that a lot of the e�ect is to be
expected simply because of the �nite speed of light - a necessary component of her
measurement. The �nite speed of light makes the approaching stick reections closer
by the factor 1�� and the receding stick's reections further apart by the factor 1+�.
She corrects for this e�ect and �nds the length of the stick is always ` = `o

p
1 � �2.

She claims she has \observed" the length of the stick and it is contracted by just
the Lorentz factor

p
1 � �2. The lab instructor is impressed and knows the \right"

answer from the Michelson-Morely experiment and the Lorentz contraction.
Student A is mi�ed but also shows he is really sharp also, even if he has done

the observations the hard way. He argues: \Yes, there is a classical e�ect, that does
cause the stick to appear distorted." However if we were asking, if we can observe
the Lorentz contraction by eye or camera, then a more careful analysis shows that
we cannot \see" it directly but have to correct our calculations to do so. The image
is actually distorted in such a way that the Lorentz contraction is hidden. Consider
the following argument about the true appearance of a rapidly moving object.

9.1.3 Sell-Illuminated Small Cube

Consider a small cube moving towards the observer or camera with very large velocity.
Arrange for it to pass over head by a small but reasonable amount. This is both for
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reality and to avoid the problem the zero in the coordinate system. We will see that
aberration of light will cause the cube to appear rotated and the �nite travel time
of light and the rotation together just compensate for the Lorentz contraction. Thus
the object appears completely normal but rotated.

If an observer looks or photographs a fast-moving object (� � 1) which
approaches him at a small angle � of observation then, if �>

�

p
1 � �2, the observer no

longer sees the front side of that object, but can see the backside. We can appreciate
this qualitatively and then quantitatively. First consider the aberration of light.

In the rest frame of the object radiation can be considered emitted isotropically.
In the observer's rest frame, the radiation appears folded forward. All the radiation
emitted from the forward direction (�0 = 0) to right angles from the direction of
motion (�0 = 90�) is contained in a cone with tan� = c=v or roughly for � � 1 inside
a cone with half angle � = 1= =

p
1� �2. Thus as the object reaches an angle higher

than ��
p
1 � �2 any radiation from the front of the object goes over the observer's

head or camera.
In fact due to the relativistic aberration only a very small part of the light

emitted backward in the rest frame of the object will go backward in the laboratory
frame. What will be observe? When an object such as a cube (radiating white light
in its rest frame) approaches from very far away (�<

p
1 � �2), then the observer

sees its front side and shortened by perspective its bottom side both radiating in the
the ultraviolet. The as the cube gets closer and the observation angle (�) grows,
the cube seems to turn and if �>1=�, then we see only the bottom still violet. As
the observation angle becomes greater, the one not only no longer sees the front but
also can see the backside and the color is less violet. When the object passes over
head (� = 90�), one observes practically only the back side of the cube, radiating in
the infrared. The picture remains nearly unchanged until the cube disappears in the
distance.

Now let us consider this a little more quantitatively. Consider the cube at the
moment it is at right angles to the observer. (The moment that the light it emits
to the observer leaves at right angles from the cube in the observer's frame.) The
observer will take a picture of the cube with light arriving in a wave front where the
light arrives to the eye or camera simultaneously. If the cube is small compared to
the distance to the camera, then to �rst order all the light from the bottom surface
leaves for the camera at essentially the same instant but the light from the back face
of the cube must leave earlier, the higher the point on the back face of the cube. The
light leaving the top of the back face of the cube must leave a time �t = `o=c and at
a position of the cube that is d = �v�t = �`o earlier (further back).
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`x = `o
p
1� �2

`y = `oc�t

v�t

?
To Observer

The image from below shows the cube with width `o transverse to the
direction of motion and bottom length in direction of motion the Lorentz contracted
`o
p
1 � �2 and back edge with same width and length `o�. This is exactly the

perspective view one would get, if the cube were rotated through and angle �.

`o

�`o

��7 `o
p
1� �2

One can do these same calculations from any selected observation angle and
�nds similar results. The image (eye or photographic) appears to be a cube rotated
by the aberration angle.

The key issue is that one is observing with light emitted from the object (cube
in our example). In relativity light propagates with constant speed c independent of
the observer's or source speed and the key point here is that the wave front always
remains perpendicular to the direction of propagation. The only thing that changes
is the direction of propagation (and thus wavefront angle) which is what we call
relativistic aberration. Thus an image in one frame remains an image in the other
and only the angle of observation changes.

This statement is true for the case of a small object which subtends a small
solid angle. As one goes to larger angles, the aberration changes and a larger solid
angle object would be rotated and distorted by the variation in aberration angle
across the object being viewed.
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10 Momentum Space

For any vector we may construct a vector space:

~F

��
��
��*

~a

���
���

�:
�
�
�
�
���

~v

��
��
���1

~x

etc.

F3

F2

F1

�
�

��

a3

a2

a1

v3

v2

v1

x1

x1

x1

�
�
��

�
�
��

�
�

��

In such a space we may use any convenient coordinates: polar, rectangular,
etc. Choice of coordinates is usually made to emphasize the symmetries present in
the situation of interest.

We know how all Lorentz vectors transform under the set of special Lorentz
transformations (tjjt0; xjjx0; yjjy0; zjjz0) where origins in space-time coincide and the
relative velocity along the x and x0 axes.

Therefore we can see how any property they have transforms.
Example:

tan�0 =
sin�

q
1� v2=c2

cos�� v=c
(301)
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�

vz

�
�
�

�
�

vy

~v

��
��
��
��
��1

vx

v =
q
v2x + v2y + v2z =

h
(v0)2 + u2 + 2uv0cos�0 � (uv0sin�=c)2

i1=2
1 + uv0cos�=c2

Any Lorentz vector transforms as

x0k = (xk � �x0)

x00 = (x0 � �xk
x0? = x? (302)

where k and ? refer to ~v frame.
In momentum space we are interested in

~p = (E=c; px; py; pz) (303)

~p � ~p = E2=c2 � j~pj2 = (m0c)
2 (304)

Pythagorean Theorem:

cos� = m0c
2

E
= 1



�


1


























�

sin� = pc
E
= v

c
= �

�

pc = mvc = �moc
2

m0c
2

E = mc2 = m0c
2
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1 + (�)2 = 2 (305)

E2 = (m0c
2)2 + (pc)2

EdE = c2pdp (306)

10.1 Distribution Functions

We can de�ne a distribution function f(x) by how one determines the number (of
something) in the interval (x1; x2) or

Number �
Z x2

x1

f(x)dx (307)

Normalize to a single event and f(x) becomes a probability withZ
all x

f(x)dx = 1

Change variables: y = y(x), then

g(y)dy = f(x)dx (308)

since number is invariant

g(y) = f(x)

�����dxdy
����� (309)

the absolute value is because f � 0 and g � 0.

For many (n) variables, one replaces
���dx
dy

��� by
��������

@x1
dy1
; @x1

dy2
; � � � @x1

dyn
...

...
...

@xn
dy1
; @xn

dy2
; � � � @xn

dyn

�������� =
�����@xidyi

�����
Where the j j is the functional determinant or Jacobian determinant of the
transformation of the variables.

Examples: From (x; y; z) to (r; �; �), j j = r2sin�.
From (x; y) to (r; �), j j = r.
Solid angle d
 = sin�d�d� with

R
sphere d
 = 4�

Volume Element = dxdydz = r2sin�drd�d� = r2drd
 = r2drjd(cos�)jd� (310)

For a Lorentz transformation without reection, J = +1, for any Lorentz transform
jJ j = 1. This is another indication that Lorentz transformations are rotations
(neglecting any translation - i.e. keeping origins aligned at zero time).
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d4~p = dp1dp2dp3dp4 = jJ jdp01dp02dp03dp04 (311)

Because the same events populate each volume element.
But the 4 components of ~p are not independent. We focus interest on the 3-D

volume element d2~p. The result of this relationship is that

d3~p

E
=
d3~p0

E0 (312)

Further
pdEd
 = p0dE0d
0 (313)

Now we can easily prove these results using the Lorentz transformation of
momentum:

E0 =  (E � �cpx) p0y = py
p0x =  (px � �E=c) p0z = pz

(314)

and
E =

q
(pc)2 + (m0c2)2 (315)

Which we can insert into the equation for p0x to obtain

p0x = 
�
px � (�=c)

q
(p2x + p2y + p2z)c

2 + (m0c2)2
�

(316)

Now we can evaluate the Jacobian�����@(p
0
x; p

0
y; p

0
z)

@(px; py; pz)

����� =

�������
@p0x
@px

@p0x
@py

@p0x
@pz

0 1 0
0 0 1

������� =
�����@p

0
x

@px

�����
= 

0
@1 � �

c

pxc
2q

(p2x + p2y + p2z)c
2 + (m0c2)2

1
A

=
E � �pxc

E
=  (E � �cpx) =

E0

E
(317)

So that

f(px; py; pz) = f 0(p0x; p
0
y; p

0
z)
E0

E
(318)

and
f(px; py; pz)dpxdpydpz = f 0(p0x; p

0
y; p

0
z)dp

0
xdp

0
ydp

0
z (319)

so
f

f 0
=
E0

E
=
dp0xdp

0
ydp

0
z

dpxdpydpz
=
d3~p0

d3~p
(320)

so
d3~p

E
=
d3~p0

E0 = invariant (321)

d3~p

E
=
p2dpd


E
= invariant =

p (pdpd
)

E
(322)

c2pdp = EdE so that pdp = EdE=c2 = invariant so pdpd
 is invariant.
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10.1.1 Further Discussion

Suppose one wants a quantity describing a distribution of events characterized by
j~pj = p: g(p;
) such that

R
g(p;
)dpd
 = number of events (or 1, if normalized to

be a probability).

g(p;
) = f(p;
) p2

g0(p0;
0)p2 = f 0(p;
) (p0)2 (323)

These formulae have made use of the relations of p2dpd
 in the �rst and
f(p;
)p2dpd
 = g(p;
)dpd
 d
 = d(cos�)d�. Taking the quotients of the two
equations one �nds

g(p;
)

g0(p0;
0)
=
f

f 0
p2

(p0)2
=

E0

(p0)2
p2

E
(324)

But f=f 0 = E0=E so that

g(p;
)E

p2
=
g0(p0;
0)E0

(p0)2
= invariant (325)

A distribution function may be expressed with respect to (j~pj;
) = (p
) or (E;
)
since p = p(E) and E = E(p).

Now let us require a distribution h(E;
) such thatZ
h(E;
)dEd
 = number of events

=
Z
h(E;
)

c2pdp

E
d
 (326)

because EdE = c2pdp. Then

h(E;
)c2p=p = g(p;
)

h(E;
) = g(p;
)
E

c2p
h(E;
)

h0(E0;
0)
= =

p0E

pE0
g

g0
=
p0E

pE0
p2E0

(p0)2E
=
p

p0
(327)

So
h(E;
)

p
=
h0(E0;
0)

p0
= invariant (328)

10.1.2 Example of a Distribution Function Problem

A narrow beam of pions with momentum 10.0 GeV/c decays (�! �+ �) in vacuum,
providing a line source of neutrinos. In the pion rest frame the neutrino momentum
distribution is

g0(p0;
0) = g0(p0; cos�0;  0) =
1

4�
�(p0 � p0):
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The distribution is isotropic with p0 = 29:3 � 10�3 GeV/c. Find the momentum
distribution of the neutrinos in the laboratory.

m�� = 0:1396 GeV/c2, m� = 0:1057 GeV/c2, m� ' 0 GeV/c2

�0�

��

�
�

�
� ��>up

��=
j��

���1

HHHj

j
-

Pion Rest FrameLab Frame

~~

� =
pc

m0c2
=

10:0

0:1396
= 71:6

� =
1q

1 + (�)2
= 1 � 0:98� 10�3

g(p;
) =
p2E0

(p0)2E
g0(p0;
0)

E� = pc; E0 = p0c, so that

g(p;
) =
p

p0
1

4�
�(p0 � p0)

E0 = (E � �pc cos�)
p0�0 = (p cos�� �E=c) (329)

From the �rst expression with E = pc, E0 = p0c:

p0 = p(1 � �cos�)

p

p0
=

1

(1 � �cos�)

g(p;
) =
1

4�

�(p(1� �cos�)� p0)

(1 � �cos�)

To �nd the distribution G(p), integrate over 
 for �xed p

G(p) =
1

4�

Z Z
d d(cos�)g(p;
)

�(p(1 � �cos�)� p0)

(1� �cos�)
(330)

Set

p(1 � �cos�) = w
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��pd(cos�) = dw;

d(cos�) = � dw

�p
: (331)

G(p) =
1

2

Z w=p(1+�)

w=p(1��)

dw

�p

p

w
�(w � p0)

=
1

2

1

�

Z
dw

w
�(w � p0)

G(p) =
1

2�p0
(332)

Independent of p so the momentum distribution is at. The distribution extends
from a maximum of p0(1 + �) to a minimum p0(1� �).

To check the calculation, evaluate

Z pmax

pmin

G(p)dp =
1

2�p0
[p0(1 + �)� p0(1� �)] = 1 (333)

The result comes out to unity as it should, because in s0

Z
g(p0;
0)dp0d
0 =

1

4�

Z
d
0

Z
dp0�(p0 � p0) = 1 (334)

10.2 Cross-Sections

Cross sections are useful for calculating interactions for a beam of incoming particles.

Result
Scattering

\Thing"

PPPPPPPPPPq
PPPPPPPPPPq

PPPPPPPPPPq

zzz z
zz zz
z zz
z zx
x

@
@
@
@@

@
@
@
@@

I = Number=Area = N0

-
-

-
-

dn = number doing a certain thing (335)

Probability =
dn

N0

=
Area for doing it

Total Area
(336)
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Area for doing it is that of of the circles = d�.

� =
Z
d�

d�
d� (337)

where � is a \thing", e.g., within dE or d
.
The multicomponent result is

� =
Z

@n�

@�1@�2 � � � @�n
d�1d�2 � � � d�n (338)

10.2.1 Example

�Total =
Z

@2�

@p@

dpd
 (339)

For a process mcose �nal state is de�ned by p; 
 (a binary process) but also

�Total =
Z

@2�

@E@

dEd
 (340)

so we need to transform such di�erential cross-sections. Let

@2�

@p@

= g(p;
) (341)

Then
@2�

@p@


E

p2
=

@2�0

@p0@
0
E0

(p0)2
(342)

If
@2�

@E@

= h(E;
) (343)

Then
@2�

@E@


1

p
=

@2�0

@E 0@
0
1

p0
(344)

10.2.2 Invariants

d3~p
E

pdEd

Ef(px; py; pz) = Ef(p2dpd
)

g(p;
) E
p2

h(E;
)

p
E
p2

@2�
@p@


1
p

@2�
@E@
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10.2.3 Scattering Processes

The particles of Newton's physics were \eternal", never losing identity, changing
mass, being created and destroyed. In modern atomic, nuclear, and particle physics
particles alter their states and are created and destroyed.

Examples:
(1) Radiation by an atom in an excited state, [Ei � Ef = h�] creating a photon.
(2) Nuclear transmutations, e.g.

� + 7N
14 ! p + 8O

17

where the sum of masses changes.
(3) Particle Production, e.g.

�� + p! �0 +K0

Two annihilations, two creations and the sum of masses changes. (This reaction is
called associate production since the \strange" particles �0 and K0 are produced in
association. The strong interaction respects and conserves \strangeness".)

All of these e�ects are well described by relativistic mechanics. However, it
says little or nothing about what happens during the reaction; but before and after
when we have independent free particles (which are well described) and conservation
laws relating initial and �nal states.

We call all these reactions generalized scattering processes. If the �nal set is
identical to the initial set (same masses, charges, spins, etc.), it is elastic scattering;
otherwise, inelastic scattering.

Because of creation and destruction of particles, the older classi�cations,
(simple vs. complex, 2-body vs. many-body, dynamics of particles vs. dynamics
of systems of particles) are meaningless.

A system is characterized by
Energy
Momentum
Angular Momentum
Electric Charge
� � �
Its permanence is in its conserved quantities.
If at one time we describe a system as having particles A; B; C; � � �, we must

remember that each may be a complex structure. E.g. an atom is a nucleus plus
electrons, a nucleus is neutrons and protons.

By calling something a particle we mean that its particle parameters (charge,
proper mass, spin, magnetic moment, : : :,) are constant in time before and/or after
the reaction occurs. Because of Quantization none of these parameters change
gradually, but only abruptly (destruction, creation). In the weak �eld of a mass
spectrometer a molecular ion moves as a single particle, but in an intense laser beam,
it might disassociate. Even particles now thought to be simple (such as the electron)
are allowed the possibility of structure by our formalism.
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10.3 Dynamics of Systems of Particles

~P =
X

~pi; ~P =
X

~pi; E =
X

Ei (345)

De�nition of C.M. System: ~P = 0. To �nd this Lorentz frame, start in an

arbitrary frame, with ~Vframe parallel to ~P in that frame.

E0 = F (E = �fPc)
P 0k = F (P = �fE=c)

P 0? = P? (346)

In the desired C.M. frame, P 0k = 0 so that

�f =
Pc

E
; ~�f =

~P c

E
=
M~V c

E
(347)

which is a restatement of E =Mc2.
The invariant of ~P is ~P � ~P = (m0c)

2. This invariant for a system is proportional
to the square of the total energy in the C.M. frame divide by c2.

One may calculate the components of ~P in any frame as if the system were a
particle of rest mass M . The 4-velocity of C.M. � ~W ;

~P =M0
~W (348)

To measure actually the components of ~P in any system, one must deal with
the individual particles, and their energies and momenta in that system. But if
they interact, one must also take into account the energy of interaction and its
equivalent mass. This is universally true for every kind of interaction energy: thermal,
electromagnetic, gravitational, atomic, nuclear, etc.

In classical mechanics of collisions we distinguish between conservation of
momentum and conservation of energy (elastic versus inelastic). In Special Relativity
they are components of a 4-vector and must be considered together. No exception
is known. But is was necessary for Pauli (1930) to postulate the existence of the
neutrino to save it.

However: we think that
conservation of total energy is not the same as conservation of the total rest-mass
(proper mass). This contradicts Newtonian assumptions.

There are only two types of entities.
(1) Rest Mass which can be \weighed" by bringing it to rest in some system
(2) massless particles moving with speed c, e.g. photons, neutrinos

A hot body weights more than an identical cold one. The relative kinetic
energy of thermal motion has rest-energy and rest-mass. Also: A closed cavity of
reecting walls containing photons \weighs" more than the same cavity empty.

So: Composite Systems must be considered carefully. Not all of the parts can
be brought to rest in the same frame. Referring to the rest mass of a composite
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system, we mean

MC:M: =
X Ei

c2
(349)

of all parts including trapped photons and other \massless" particles.
A bound p+ + e� is a hydrogen atom. It is lighter than the sum of separate

masses of p and e, both at rest, inspite of the e� motion having kinetic energy which
has mass. This e�ect is due to the potential energy < 0, which is the di�erence
between E-M �eld energies in the two con�gurations. This E-M energy is associated
with photons having m0 = 0.

10.3.1 Radiative Transitions & Decay

This leads us to radiative transitions, which are de�ned as emission or absorption of
real photons which can be identi�ed separately from other parts of the system, either
at every early or very late times.

photon momentum� j~pj = h�

c
; E = h� j~pj2 = 0 (350)

Now we consider the generic case of radiative decay of an initial state \mother"
particle with a rest massM0 into a �nal state \daughter" particles with rest mass m0

and a photon.

-  -� ������ MV
-

S0: \Daughter Rest FrameS: \Mother" Rest Frame

~~

In reference frame S (initial \mother" particle at rest) one has

~Pm = ~Pd + ~�
~Pm =

�
M0c

2; 0; 0; 0
�

=
�
mc2;�p; 0; 0

�
+ (E ; p; 0; 0)

=
�
m0c

2;�E=c; 0; 0
�
+ (E ; E=c; 0; 0) (351)

~P 0m =
�
Mc2;�E0

=c; 0; 0
�

=
�
m0c

2; 0; 0; 0
�
+
�
E0
; E

0
=c; 0; 0

�
(352)

Conservation of four-momentum gives

S : M0c
2 = mc2 + E

S0 : Mc2 = m0c
2 + E0

 (353)

The Lorentz transformation gives us a way to handle this:
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Lorentz Transform (L:T:)
E0 =  (E � �pc) p0 =  (p � �E=c)

Apply L:T:
Mc2 =  (M0c

2 � �0) moc
2 =  (mc2 � �(�E)) E0

 =  (E � �E)

E0
 =  (0� �m0c

2) 0 = 
�
�E0

=c� �mc
�

E0
=c =  (E=c� �E=c)

These yield

M = M0  m
m0

�
1 � ( E

mc2
)2
�
= 1 E0

 = (1� �)E =
q

1��
1+�

E

E0
 = ��M0c

2 � = � E
mc2

Now inverse L:T:
E =  (E0 + �pc) p =  (p0 + �E0=c)

M0c
2 = 

�
Mc2 + �E0



�
mc2 =  (m0c

2 + � 0) E0
 =  (0 � �M0c)

0 = 
�
E0
=c+ �Mc

�
�E0

=c =  (0 + �m0c) E=c = 
�
E0
=c+ �E0

=c
�

These give

 M
M0

�
1 � (

E0


Mc2
)2
�
= 1 m = m0

� = � E0


Mc2
E = ��m0c

2 E =  (1 + �)E0
 =

q
1��
1+�

E

There are 12 results from the forward and backward Lorentz transformations.
All four on the photon give the same result:

E0


E

=

s
1� �

1 + �
(354)

Two give the \de�nitions"
M

M0

=
m

m0

=  (355)

Two give

� = � E

mc2
= �

E0


Mc2
(356)

so that
ME = mE0

 (357)

But since M=M0 = m=m0 = , This is not an independent result.
The last four relations can be combined with the above to give

2
�
1 � �2

�
= 1

which is an identity. There remain the conservation relations:

M0c
2 = mc2 + E ; Mc2 = m0c

2 + E0


One may de�ne
�E � (M0 �m0) c

2 (358)

The system is fully de�ned by M0c
2 and �E.
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10.3.2 Radiative Decay Continued

In Mother particle rest frame SM

~PMother =
�
M0c

2; 0; 0; 0
�
=c

~PDaughter =
�
M0c

2 � E ; �E; 0; 0
�
=c

~PPhoton = (E; E ; 0; 0) =c (359)

In Daughter rest frame Sd

~PMother =

0
@ (M0c

2)2 �m0Eq
(M0c)2 � 2M0E

;
M0Eq

(M0c)2 � 2M0E

; 0; 0

1
A =c

~PDaughter =
�
[(M0c)

2 � 2M0E]
1=2; 0; 0; 0

�
=c

~PPhoton =

0
@ M0Eq

(M0c)2 � 2M0E

;
M0Eq

(M0c)2 � 2M0E

; 0; 0

1
A =c

q
(M0c)2 � 2M0E=c = rest mass of daughter in its own frame (360)

A convenient path to solving for the various quantities is in terms of M0 and
�E is:

� = � E

mc2
so  =

1q
1 � (E=mc2)2

(361)

and
M0 ��E=c2 = m0 = m

q
1� (E=mc2)2 (362)

Square this equation

M2
0 � 2M0�E=c

2 +
�
�E=c2

�2
= m2 �

�
E=mc

2
�2

(363)

Insert m =M0 � E=c
2

M2
0 � 2M0�E=c

2 +
�
�E=c2

�2
=M2

0 � 2M0E=c
2 +

�
E=mc

2
�2
�
�
E=mc

2
�2

(364)

and solve for E:

2M0E = 2M0�E � (�E=c)2

E = �E
�
1� �E

2M0c2

�
(365)

From this, one �nds by substitution the values of �, , E0
 , M , and m. If a solution

in terms of M0 and m0 is wanted, merely replace �E by (M0 �m0) c2, obtaining

E =
�
1 � m0

M0

�2 M0c
2

2
(366)
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Simplifying Features for Radiative Decay
(1) One may choose all momenta parallel to x and x0. Only a single direction occurs
in one frame.
(2) Conservation of ~P is in general four scalar equations but only two for simple
radiative decay.
(3) Problem is completely determined: only one possible outcome.
(4) Only two useful frames; no photon rest frame

Although there are very many quantitiesM0, m0, E , vrel between Mother and
Daughter particles, �E, total energy of m in M 's frame, Kinetic Energy of each in
other's frame, �, . There are really only four that de�ne the rest: m0, m0, E, & V .
A particle emits a photon. One may be interested in the Mother's or the Daughter's
frame:

SM SD
~Pintial = (minc; 0; 0; 0) ~Pin =

�
mfc+ E0

=c; �E0
=c; 0; 0

�
~P�nal = (minc�E=c; �E=c; 0; 0) ~Pf = (mfc; 0; 0; 0)

~� = (E=c; E=c; 0; 0) ~� =
�
E0
=c; E

0
=c; 0; 0

�
Double Massless Consider decay with both daughters massless (e.g. photon,
neutrinos)

Although similar, there is an important di�erence: There is only one special
Lorentz frame - the rest frame of the original particle. Photons do not have rest
frames. In the special Lorentz frame, we have

~Pintial =
�
m0c

2; 0; 0; 0; 0
�

(367)

~P�nal = (E ; Ecos�=c; Esin�=c; 0)! (E ;�Ecos�=c; �Esin�=c; 0) (368)

�2 = � � �1

�1 = �

�
�

�
��+

�
�
�
��3

����

This diagram is constructed so
that ~Pinitial = ~P�nal : 2E = m0c

2

cos�1 = cos�; cos�2 = cos(� � �1) = �cos�1 (369)

Similarly
sin�2 = �sin�1 = �sin� (370)

We can choose arbitrarily a second coordinate system in which the initial particle
moves in the direction de�ned by �01 with a velocity de�ned by �
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E0
1

E0
2

E

E

�01

�02
A
A
AAU

��
��
��
�1

-~~
y0

x0x

y

�
�
�
�
�>

�
�
�

��+

�1 = �

�2 = � � �1

It is evident that (1) and (2) lie in the x� y and x0 � y0 planes ( =  0 = 0).

j ~P initialj2 = j ~P�nalj2

(m0c
2)2 =

�
~P1F + ~P2F

�
�
�
~P1F + ~P2F

�
= j ~P1F j2 + j ~P2F j2 + 2 ~P1F � ~P2F
= 0 + 0 + 2 (E0

1E
0
2 � ~p1f � ~p2f ) (371)

Now ~pif = E0
i=c and ~p1f � ~p2f = E0

1E
0
2cos�=c

2 with � the angle between the ~p0's.
Thus

(m0c
2)2 = 2E0

1E
0
2 (1� cos�) (372)

An important use of this relation is to recognize photons from �0 or �0 decay against
a background of uncorrelated photons.

In S, � = �, E0
1 = E0

2 = E and m0c
2 = 2E.

For the individual photons the Lorentz transformation with pc = E, p1k =
Ecos�, p0c = E0, p1k = E0cos�0 gives

E0 = E (1 � �cos�)
E0cos�0 = E (cos�� �)
E0sin�0 = Esin� (373)

10.4 General Case of Decay into Two Bodies of Any Masses

Consider a system 0 of rest mass m0 goes to pieces 1 and 2 having non-zero rest
masses m1 and m2.

~P0 = ~P1 + ~P2 (374)

The rest frame of 0 is S and we label everything with left subscript 0

(0E0; 0; 0; 0) = (0E1; ~0p1c) + (0E2; ~0p2c) (375)

with 0E0 = m0c
2, 0E2

1 = (0p1c)2 + (m1c
2)2 and 0E

2
2 = (0p2c)2 + (m2c

2)2 Thus

0E0 =0 E1 +0 E2 (376)
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and

0p1 +0 p2 = 0 (377)

Denote j0p1j = j0p2j = q0, then

0E1 =
q
(q0c)2 + (m1c2)2

0E2 =
q
(q0c)2 + (m2c2)2 (378)

Now express conservation of 4-momentum as

~P2 = ~P0 � ~P1 (379)

and form j ~P2j2:

j ~P2j2 = j ~P0j2 + j ~P1j2 � 2 ~P0 � ~P1
(m2c

2)2 = (m0c
2)2 + (m1c

2)2 �
h
E0E1=c

2 � ~p0 � ~p1
i

(380)

which holds in any frame.
Choose to evaluate ~P0 � ~P1 in frame S, where ~0p0 = 0, 0E0 = m0c

2 and solve
for E1

0E1 =

 
m2

0 +m2
1 �m2

2

2m0

!
c2 (381)

If instead we start with
~P1 = ~P0 � ~P2 (382)

we �nd

0E2 =

 
m2

0 +m2
2 �m2

1

2m0

!
c2 (383)

We �nd q0 from

q0c =
q
(0E1)2 � (m1c2)2 =

2
4 m2

0 +m2
1 �m2

2

2m0

!2

c4 � 4m2
0m

2
1c

4

(2m0)2

3
5
1=2

=
1

2m0

��
m2

0 +m2
1 �m2

2

�2
� 4m2

0m
2
1

�1=2
c2

q0 =
1

2m0

h
m2

0 +m4
1 +m4

2 � 2m2
0m

2
1 � 2m2

0m
2
2 � 2m2

1m
2
2

i1=2
c

=
1

2m0

h�
m2

0 �m2
1 � 2m1m2 �m2

2

� �
m2

0 �m2
1 + 2m1m2 �m2

2

�i1=2
c

=
1

2m0

h�
m2

0 � (m2
1 +m2

2)
� �
m2

0 � (m2
1 �m2

2)
�i1=2

c (384)

The speeds of the fragments in S are

�1 =
v1

c
=

0p1

0E1=c
=

q0c

0E1

=

q
(0E1)2 � (m1c2)2

0E1

=

vuut1 �
 
m1c2

0E1

!2

(385)
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These velocities are completely determined by ~PTotal = constant; except for the
direction.

We may also evaluate the dynamical variables in the rest frame of particle 1,
S1. All quantities with left subscript 1.

~
1P0 = ~

1P1 � ~
1P2 (386)

Square this to �nd the modulus gives

j ~1P0j2 = j ~1P1j2 + j ~1P2j2 + 2 ~
1P1 � ~

1P2

(m0c
2)2 = (m1c

2)2 + (m2c
2)2 �

h
1E11E2=c

2 � ~p1 � ~p2
i

m2
0 = m2

1 +m2
2 + 2m11E2=c

2

1E2 =
1

2m1

�
m2

0 �m2
1 �m2

2

�
c2 (387)

Similarly,

1E0 =
1

2m1

�
m2

0 +m2
1 �m2

2

�
c2 (388)

and of course

1E1 = m1c
2

10.4.1 Examples:

Consider the nuclear decay

92U
238 ! 90Th

234 + 2He
4 (389)

and electron scattering

e� + Hg ! e�Hg Elastic
e� + Hg ! e�Hg� Inelastic (390)

The changes in total proper mass contradicts Newtonian mechanics directly.

10.5 Two-Body Initial State

The two body initial state is a binary collision. Initially, two independent systems,
1 and 2. The �nal state F may have 1, 2, or many \particles". We start with the
4-momentum ~P0 of F .

2
2

11

Z
Z
Z
Z
Z~

�
�
�
�
�>

-���F F-���

�
�
�
�
�>

Z
Z
Z
Z
Z~
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The second schematic is just the �rst with the arrows reversed.

~P1 + ~P2 = ~P0 (391)

The frame Sf is the center-of-momentum frame of the colliding particles. m�c2

is their total energy in Sf . We are using an * (asterisk) for quantities in this frame.
(m�c2 = E�)

E�
j =

1

2E�

�
(E�)2 + (mjc

2)2 � (mkc
2)2
�

(392)

for j = 1; k = 2 or j = 2; k = 1.

E�
j =

(m�)2 +m2
j �m2

k

2m� c2 (393)

q0 =
1

2m�

�
(m�)4 +m4

1 +m4
2 � 2(m�)2m2

1 � 2(m�)2m2
2 � 2(m1)

2m2
2

�1=2
=

1

2m�

�h
(m�)2 � (m1 +m2)

2
i h
(m�)2 � (m1 �m2)

2
i�1=2

(394)

In many experiments one of the two initial bodies is at rest in the laboratory
frame; it is useful to �nd the components of ~P in its frame, say that of 2. Squaring
~P0 = ~P1 + ~P2 yields

(m�)2 = m2
0 +m2

2 + 2m2(2E1)=c
2; (395)

or

2E1 =
(m�)2 �m2

1 �m2
2

2m2

(396)

By squaring ~P1 = ~P0 � ~P2 yields

m2
1 = m2

0 +m2
2 � 2m2(2E0)=c

2; (397)

From these the momentum magnitude j ~2p1j = j ~2p0j can be found by

(pc)2 = E2 � (mc2)2 (398)

We can evaluate m� in terms of the quantities in frame S2:

(m�)2 = (2E1 + 2E2)
2
=c4 � ( ~2p1 + ~2p2)

2
=c2 =

�
2E1 +m2c

2
�2
=c4 � 2p1

2=c2; (399)

or
(m�)2 = m2

1 +m2
2 + 2m22E1=c

2 (400)

Which is identical the equation for 1E0.
The beam particle kinetic energy is

2KE1 = 2E1 �m1c
2 (401)
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so that equation for m� is

(m�)2 = m2
1 +m2

2 + 2m22KE2=c
2 (402)

To transform between S0 and S2 we need the relative velocity

� = 0v2 =
j ~0p2jc
0E2

=
(1p2 + 0)c

1E2 +m2c2
(403)

This can be found in terms of either the beam momentum or the beam energy by
using

1E2
2 = 1p2

2c2 + (m1c
2)2: (404)

10.5.1 Two Body Initial States: Summary

General Features:
(1) A unique direction is de�ned in the intial state momenta. If another direction
enters in describing the �nal state, an element of simplicity is lost.
(2) The conservation of ~P involves four scale equations of constraint. If only two
particles come out, this second de�ned direction and the intial one de�ne a plane
which may be taken as the x � y plane equal to the x0 � y0 plane and the four
equations reduce to three.
(3) If only one particle comes out the problem is completely determined. Retudes to
the previous problem of one in and two out, reversed. If two come out, three more
quantities are un�xed. These may be take as

(1) mass ratio of daughters
(2,3) their directions (opposite: �, �) in the c.m. system of the incoming pair.
These last two are on a di�erent footing: Totally undetermined by the general

conservation of 4-momentum. so, if the �nal rest-mass ratio is given, the problem is
fully de�ned and all directions in the c.m. system are equally valid as to conservation
of ~P . There may be additional physics that relates to the relative directions.

10.5.2 Special Cases of two-body initial states

(1) One body �nal state
(2) Elastic Scattering (same two bodies in �nal state)
(3) Inelastic Scattering - two body �nal state
(4) General Case: many �nal bodies
(1) One body �nal state Completely inelastic collision where the two bodies stick
together. This can happen only, if there exists an excited bound state of 1 and 2 with
just the right rest energy, to allow conservation of both energy and momentum.

Consider the head-on collision of two putty balls. Conservation of three
momentum ~p yields

0 = 1m1v1 + 2m2v2 = 0m0v0 (405)

154



which works only if v0 = 0 and thus 0 = 1. The time-like part of the 4-vector ~P
conservation is energy conservation

1m1 + 2m2 = 0m0 = m0

m1 +KE1=c
2 +m2 +KE2=c

2 = m0;
m0 = m1 +m+ 2 + (KE1 +KE2) =c

2 (406)

Macroscopic kinetic energy is converted to chaotic internal energy (heat), contributing
to m0 and thus to inertia.
(2) Elastic Scattering Two bodies come in and the same two come out of the scattering
process. 1 + 2! 10 + 20; m10 = m1, & m20 = m2.

20

10
1

2

�
�
�
��>

�
�
�
��> Z

Z
Z
Z
ZZ~

Z
Z
Z
Z
ZZ~

"!
# 

Four-momentum conservation in the C.M. frame S gives the sum of the two
input 3-momenta and the sum of the two output momenta are zero, ~p1 + ~p2 = 0, and
~p10 + ~p20 = 0. And thus j~pj = q0. So all four momenta vectors can be drawn as:

~0p2

~0p10

~0p20

~0p1

�

�
�
�

�
�
��+

�
�
�
�
�
��3

� -u

Quantum �eld theories gives ways of calculation the distribution function for �
and also  ; but ~Ptotal+ constant. Only reduces the number of independent variables
by 4.

10.5.3 4-Momentum Transfer

De�ne the 4-momentum transfer ~� or sometimes ~Q as

~� � ~P10 � ~P1 = ~P2 � ~P20 (407)

The 4-momentum transfer is useful, if we regard the interaction as in two steps as
shown in the following �gures were are generic Feymann diagrams:
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Let us evaluate ~� � ~�, the four-momentum squared

~� � ~� = j ~P10j2 + j ~P1j2 � 2P10 � ~P1
= (m1c)

2 + (m1c)
2 � 2

�
E1E10=c

2 + ~p10 � ~p1
�

= 2
�
(m1c)

2 � (1E0=c)
2 + q20cos0�

�
= �2

�
q20 � q20cos0�

�
= �2q20 (1 � cos0�) (408)

The four-momentum transfer ~� is a space-like vector (j ~�j2 < 0. It is usually de�ned
with the opposite sign to the convention that I use here but is space-like.

For a grazing collision 0�! 0, so j ~�j2 ! 0.
For a head-on collision, 0�! � so j ~�j2 ! 4q20.

A simpler derivation is:

��
��
��
��
��

0�

~p10

~p

~�

B
B
B
B
B
B
BM

-�
�
�
�
�
�
�
��>

�

2
= psin

�
0�

2

�
; (409)

�2 = 4p2sin2
�
0�

2

�
= 2p2 (1 � cos0�) (410)

Since j ~�j2 is linear in cos0�, equal intervals of j ~�j2 correspond to equal intervals
of solid angle in the C.M..

Because j ~�j2 is a Lorentz invariant, we may calculate its value in any frame.
Do so in S2, the rest frame of particle 2.

j ~�j2 = j ~P2j2 + j ~P20 j2 + 2 ~P2 � ~P20
= (m2c)

2 + (m2c)
2 + 2

�
EeE20=c

2 � ~p2 � ~p20
�
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= 2(m2c)
2 + 2 (m2E20 + 0)

= 2m2 (Erestenergy�Etotal)
= 2m22KE2 (411)

The last, 2KE2 is the laboratory kinetic energy acquired by the struck particle { the
particle that was previously at rest in the lab.

If the �nal velocity is � c, then 2KE2 ' j ~2p2j2=(2m2), so that j ~�j2 ' j2p2j2;
square of the four-momentumtransfer is approximately the square of the 3-momentum
transfer.

10.5.4 Cross-Momentum Transfer

The 4-momentum transfer was de�ned as

~� � ~P10 � ~P1 = ~P2 � ~P20
= ~�(1; 10) = � ~�(2; 20) (412)

These had an arbitrary sign choice, since one particle gains and one loses.
We can also de�ne

~�(1; 20) � � ~�(2; 10)
= ~P20 � ~P1 = ~P10 � ~P2 (413)

The calculations are similar, resulting in

j ~�(1; 20)j2 = (m1c)
2 + (m2c)

2 � 20E20E1=c
2 + 2q20cos(�0�) (414)

This has a maximum when the �rst ~�j2 is minimum and vice versa; since it varies
linearly with the opposite sign of cos0�.

In frame S2,

j ~�(1; 20)j2 = (m1 �m2)
2c2 � 2m22KE10 (415)

Where the last term 2KE10 is the lab kinetic energy of the \incident" particle after
the collision.

The basic variables in elastic scattering are: m0 and j ~�j2. They are analogous
to E, l instead of b; v in Coulomb scattering.

v

6
? b impact parameter

��
��
��
�*

- ~
The 4-momentum transfer ~� is useful for:

(1) For kinematics in general
(2) Corresponds to model of process for exchange of a virtual particle or when the
initial particle carries \identity", e.g. electric charge, spin direction, etc.
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10.5.5 Inelastic Scattering: 2 in, 2 out

Two particles in and two particles out but with m1 6= m10 and m2 6= m20.
In C.M. system the incoming particles have equal and opposite momenta

with magnitude q0. In C.M. system the outgoing particles have equal and opposite
momenta with di�erent magnitude q00. q00 can be less than (exothermic) or greater
(endothermic) than q0. The results change from the earlier two to two elastic case:

0E10 =
1

2m0

�
m2

0 +m2
10 �m2

20

�
c2 (416)

which is now not equal to

0E1 =
1

2m0

�
m2

0 +m2
1 �m2

2

�
c2 (417)

also same with 1! 2 and 10 ! 20. Also

q00 =
1

2m0

h
m4

0 +m4
10 +m4

20 � 2
�
m2

0m
2
10 +m2

10m
2
20 +m2

20m
2
0

�i1=2
6= q0 =

1

2m0

h
m4

0 +m4
1 +m4

2 � 2
�
m2

0m
2
1 +m2

1m
2
2 +m2

2m
2
0

�i1=2
(418)

As m0 decreases, q0 and q00 decrease. If q
0
0 < q0, it will arrive at zero �rst. Then for

further decease of m0 (smaller initial total energy), the reaction cannot occur. (One
�nds an imaginary q00.)

We may factor q00 di�erently:

q00 =
1

2m0

h�
m2

0 � [m10 +m20]
2
� �
m2

0 � [m10 �m20]
2
�i1=2

c (419)

So the threshold is when the �rst ( ) reaches zero for

m0 threshold = m10 +m20 (420)

At that point there is just enough total energy to make the two �nal rest energies,
but none to give them any kinetic energy.

There are many expressions for a threshold: e.g., if particles 2 is �xed in the
laboratory reference system S2:

2KE1 threshold =
1

2m0

h
(m10 +m20)

2 � (m10 �m20)
2
i
c2 (421)

Which can be derived from the equation

m2
0 = (m10 +m20)

2 + 2m2 2KE1 (422)

Then there is the momentum and cross-momentum transfer. There are many
more relations which can be derived. An example is

j ~�(1; 10)j2 = (m10c)
2+(m1c)

2�2(0E10)(0E1)=c
2+2q0q

0
0cos(0�) = (m20�m2)

2c2+2m2 2KE20

(423)

158



10.5.6 The General Case with � 3 Final Particles

One may proceed by grouping into two system, then breaking each system down.
Consider N = 3.

1 + 2 ! 10 + 20 + 30

1 + 2 ! (10 + 20) + 30 (424)

In this case we group particles 10 and 20 into a composite particle in some other frame
moving with momentum p, where p then decays to 10 and 20. This is a lot of work.
What is simple? Nothing, except thresholds.

The parsimonious (energy e�cient) was to make anything (in terms of energy
expended) is to make it at rest.

m0 threshold
= m10 +m20 + � � �+mN 0 (425)

The threshold energy is the sum of the rest masses in the �nal state and m0 threshold =
(
P
Ei=c

2)initial state

10.5.7 Colliding Beams

Consider two equal energy beam colliding colliding in the laboratory frame L.

C:M: Energy = m0 threshold = LE1 + LE2 (426)

Suppose each beam particle has 30 GeV: m)c
2 = 60 GeV.

What is the equivalent accelerator laboratory energy (p, p) for a target at rest?

60 =
q
2(1 + ELab); ELab = 1800 GeV (427)

The colliding p-p beams at CERN 20-30 GeV each. Several labs collide e on e:
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11 Radiation From Accelerated Charge

11.1 Introduction

You have learned about radiation from an accelerated charge in your classical
electromagnetism course. We review this and treat it according to the prescriptions
of Special Relativity to �nd the relativistically correct treatment.

Radiation from a relativistic accelerated charge is important in:
(1) particle and accelerator physics { at very high energies ( � 1) radiation losses,
e.g. synchrotron radiation, are a dominant factor in accelerator design and operation
and radiative processes are a signi�cant factor in particle interactions.
(2) astrophysics { the brightest sources from the greatest distances are usually
relativistically beamed.
(3) Condensed matter physics and biophysics use relativistically beamed radiation as
a signi�cant tool. An example we will consider is the Advanced Light Source (ALS)
at the Lawrence Berkeley Laboratory. Now free electron lasers are now a regular tool.

We will need to use relativistic transformations to determine the radiation and
power emitted by a particle moving at relativistic speeds.

Lets look at the concept of relativistic beaming to get an idea before we go
into the details which require a fair amount of mathematics.

(c)

(b)

(a)
� � 1
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Radiation from an accelerated relativistic particle can be greatly enhanced.
Part of this e�ect is due to the aberration of angles and part due to the Doppler
e�ect.
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11.2 Plane Wave Electromagnetic Field

At long distances from accelerating charges the radiation �eld components of F ��

dominate. They are related to the acceleration and satisfy all the properties of the
plane wave electromagnetic �eld:

~HPW = n̂� ~EPW ; n̂ � ~EPW = n̂ � ~HPW = ~EPW � ~HPW = 0 (428)

wheren̂ is the direction of propagation. At shorter distances the components of F ��,
which do not depend on acceleration, dominate. Speci�cally, n̂ � ~E 6= 0.

11.3 Doppler E�ect

From time dilation we are used to the notion that a moving clock or system operating
at frequency �0 in its rest frame will appear to be slower to a reference system.

�t = �t0 (429)

so that if the period in the rest frame is �t0 = 1=�0, then

� = �0= (430)

The factor leads to the relativistic transverse Doppler shift. The frequency shift one
would observe for a clock or system moving transversely to the line of sight.

Thus the time between wave peaks (crests) or pulses is

�t = �t0 =


�0
(431)

� in observers frame

-� d

�

Observer

�
�
�
�
�
�
�
�
�
�
�
�
�
��3

�
�
�
�
�
�
�
�
�
�
�
�
�
��3

uu
~v

-

If the sources is moving at an angle � to the observer's line of sight, then the
di�erence in arrival times, �tA, of successive pulses or crests is

�tA = �t� d

c
= �t(1� v

c
cos�)

161



1

�obs
=



�0
(1� v

c
cos�obs) (432)

which when inverted or multiplied by c yields:

�obs =
�0

(1 � v
c
cos�obs)

�obs = �0(1� v

c
cos�) (433)

11.4 Radiation by an Accelerated Charge Near Rest

In 1897 Larmor derived the formula for the radiation by an accelerated charged
particle. He found for the power and angular distribution:

P =
2q2

3c3
~a � ~a dP

d

=

q2

4�c3
jaj2sin2� (434)

where � is the angle to the direction of acceleration. It is our task to �nd the
relativistically consistent and correct version of these formulae.

We can rederive the Larmor formula for your education. We consider the
electric �eld to be a real physical entity that points radially back to a charge at rest.
If we go into a moving frame, the electric �eld lines will continue to point radially
back to the instanteous position of the charge. The transformation of the electric �eld
works out precisely that way. The Lorentz-Fitzgerald contraction along the direction
of motion causes an increase by the factor  of the transverse component of the �eld.
Gauss's law continues to hold in that an integral over a closed surface, such as a
sphere, gives the net charge within.

Now if a charge is diverted from uniform motion, then by our earlier arguments
about causality, the electric �eld lines out at radius R can not be e�ected by that
change from uniform motion until a time t = R=c later. (In fact we expect that the
electic �eld lines will change at the speed of light since light is an electromagnetic
phenomenon.) Thus at a time t after a brief �t = � disturbance (change from one
state of uniform motion to another - also called acceleration) there is a critical radius
R = ct. Inside of radius R � c� the electric �eld lines point radially to the new
instanteous position of the charge and outside of radius R+ c� the electric �eld lines
point radially to the virtual instanteous position of the undisturbed charge. The
virtual instanteous position is where the charge would have been had it not been
disturbed. There is a near discontinuity in the �eld lines where they must make a
jaunt nearly perpendicular to radial. Nearly means that the angle between the �eld
line and perpendicular to radial is of order c�=vt where v is the velocity change due
to the disturbance.

Consider: a charge moving with velocity v � c abruptly, at time t = 0, is
decelerated at a constant rate a until it comes to rest.
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vo

t
0 �

v

J
J
J
J
J
JJ

6

-

At t = 0, x = 0 and at t = � , x = vo�=2.
Now consider �elds at a time tf � � . At a distance r > ctf , the �eld will be

that of a uniformly moving charge, emanating from the \virtual present position" (the
point where the particle would have been, x = v0tf , if it had continued unaccelerated.
At a distance r < c(tf � � ), the �eld will be that of a charge at rest with x = vo�=2.

There is a transition region which is nearly a spherical shell (vo � c) A
particular �eld line L de�nes a cone of angle, �, inside, which contains a certain
ux. Its continuation L0 de�nes another cone which must contain the same ux by
reason of Gauss's law relating the �eld ux and the enclosed charge. Thus �0 = � and
L0 is parallel to L.

Consider the portion connecting these two regimes.
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The radial component of the electric �eld, Er must be the same in the shell as
just outside of it on either side (Gauss's law).

Er =
q

r2
=

q

ctfr
=

q

(ctf )2
(435)

By the geometry of the situation

E�

Er

=
votfsin�

c�
(436)

E� =
votfsin�

c�
Er =

votfsin�

c�

q

(ctf )2
=
qvosin�

c3tf�
: (437)

Now ctf = r, and a = vo=tf , so that

E� =
qasin�

c2r
(438)

The signi�cance of this result is that E� / 1=r while Er / 1=r2. At a large distance
the tangential electric �eld E� will dominate.

From our general knowledge of varying vacuum �elds we know that there will
be a component of ~B of strength equal to ~E and perpendicular both to ~E and ~r.

The energy density (energy per unit volume) in the transition layer is

u =
Energy

Volume
=
E2
�

8�
+
B�

8�
=
E2
�

4�
=
q2a2sin2�

4�c4r2
(439)

The volume of the shell is it area (4�r2) times its thickness (c� ) and the average of
sin2� = 2=3,

< sin2� > =
1

4�

Z 2�

0

Z 1

�1
sin2�d(cos�)d� =

1

2

Z 1

�1
sin2�d(cos�) =

1

2

Z 1

�1
(1� x2)dx

=
1

2
(x� 1

3
x3)j1�1 =

2

3
(440)

so that the energy in the transition layer is

E =
2

3

q2a2�

c3
:

The radiated power is then the energy per unit time:

P =
2

3

q2a2

c3
: (441)

which is precisely the formula derived by Larmor in 1897.

164



11.5 Radiation from Circular Orbit

Suppose that ~a ? ~B, giving motion in a circle and that  � 1:
insert �gure: Reference frame S Laboratory and reference frame S0

which is the electron instantaneous rest frame

two column

The laboratory reference frame S has ~B perpendicular to the plane of the
circular orbit (Bx = By = 0, and Bz = B and ~E = 0

F = ej~v � ~Bj = mov
2

r
(442)

By transformation law F 0 = �2;3F
column 2 Transform �elds:

E0 =  (E � �B) (443)

or more precisely

~E0 = 
�
~E � ~� � ~B

�
=  (0 + �xBz(�êy))
= ��Bêy (444)

Thus
~F = (�e) ~E0 = +�qBêy = mo~a (445)

Thus

a =
�qB

mo

(446)

The power emitted is

P =
2

3

q2a2

c3
=

2

3

�22q4B2

m2
oc

3
(447)

This is the correct relativistic form! because P is energy per unit time and each is
the 0-component of a 4-vector!!

To make a relativistic generalization we employ the concept of covariance.
The Poynting vector is the 0-0 component of the electromagnetic stress tensor

and the radiated electromagnetic energy is the 0-component of a Lorentz 4-vector.
Time is the 0-component of a Lorentz 4-vector. So the ratio energy per time is an
invariant.

Can one �nd a Lorentz invariant that reduces to Larmor's formula as � ! 0?
If so, it will be the correct relativistic formula! Is it unique? Yes, if we require it to

involve only ~� and d~�=dt and not higher powers.
How is one to construct it? Non-relativistically,

dv

dt
=

1

mo

dp

dt
(448)
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So the Larmor power is

P =
2

3

e2

m2
oc

3

 
d~p

dt
� d~p
dt

!
(449)

To get an invariant, experience tells us to substitute d� for dt, i.e. d~p=dt ! d~p=d� ,
and add the fourth component:

d~p

d�
� d~p
d�

=

 
dE

d�

!2

� c2
 
d~p

d�

!2

(450)

Notice that
EdE = c2pdp (451)

So  
dE

c

!2

=
(pc)2

E2
(dp)2 =

�
mvc

mc2

�
(dp)2 = �2 (dp)2 : (452)

So that
1

c2
jd~p
d�
j2 = jd~p

d�
j2 � �2

 
dp

d�

!2

(453)

Giving

P =
2

3

e2

m2
oc

3

2
4jd~p
d�
j2 � �2

 
dp

d�

!2
3
5 (454)

It is possible to write this in many ways. One way is

P =
2

3

e2

c
6
�
j _~�j2 � j~� � _~�j2

�
(455)

11.6 Power and Angular Distribution Summary

We can calculate these in a consistent way by using these formula as correct in the
rest (primed) frame of the electron and transform the accelerations (forces), angles,
frequencies, etc. into the laboratory frame. What we need is to show that powe is
a Lorentz invariant P = P 0 for any emitter that emits with front-back symmetry
(zero net momentum) in its instantaneous rest frame. To do this we make use of the
invariance of ~a � ~u which is zero for all systems.

~a � ~u = d~u

d�
� ~u = 1

2

d

d�
(u�u�) =

1

2

d

d�
(c2) = 0

This is a consequence invariance of the speed of light and four-vector velocity.
In the zero net radiation momentum (in instanteous rest frame) case ~a�~a = ~a�~a

since in the rest frame a0 = 0. Thus the power can be evaluated in any frame can be
found by computing the acceleration in that frame and squaring it.
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P =
2q2

3c3
~a0 � ~a0 =

2q2

3c3

�
a02? + a02k

�

=
2q2

3c3
4
�
a2? + 2a2k

�
(456)

where a? is the acceleration perpendicular to the motion of the charged particle and
ak is the acceleration component parallel to the charge particle motion. In the last
line we have made use of the transformation of accelerations a0k = 3ak and a0? = 2a?
evaluated in the instantaneous rest frame (primed) of the electron. Note that there
is a factor of  di�erence in the transformation of accelerations perpendicular and
parallel to the direction of motion. This translates into a di�erence between 4 and
6 in the perpendicular and parallel cases.

We get a similar expression for the angular distribution:

dP

d

=

q2

4�c3
a2? + 2a2k

(1 � �cos�)4
sin2�0 (457)

We are making use of the conversion

dP

d

=

1

4(1 � �cos�)4
dP 0

d
0

Evaluation for perpendicular and parallel cases yields:

dP?
d


=
q2a2?
4�c3

1

(1� �cos�)4

"
1� sin2�cos2�

2(1� �cos�)2

#

!�1 � 4q2a2?
�c3

8
1� 22�2cos2� + 4�4

(1 + 2�2)6
(458)

dPk
d


=
q2a2?
4�c3

sin2�

(1� �cos�)6
!�1�

4q2a2k
�c3

10
2�2

(1 + 2�2)6
(459)

Note the large powers of  8 and 10 which shows the seriousness of the
relativistic e�ects. Before we follow this up in detail, we review radiation near the
rest frame of the emitting particle.

11.6.1 Case I: acceleration parallel to motion

Consider ~� k _~�; acceleration parallel to motion ~� � _~� = 0. Recalling that
�2 = 1� 1=2, then

� _� =
_

3
;

_� =
_

�3
; _�2 =

_2

�26
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P =
2

3

e2

c

 
_

�

!2

(460)

P =
2

3

e2

m2
oc

3

�
1� �2

� dp
d�

!2

=
2

3

e2

m2
oc

3
2

1

2

 
dp

dt

!2

d� =
dt



=
2

3

e2

m2
oc

3
(moc

2)2
"
d(�)

dt

#
p = �moc

=
2

3

e2

c

 
_

�

!2

(461)

where the conversion makes use of the relations

(�) =
q
2 � 1

d(�)

dt
=

1

2

2 _p
2 � 1

=
 _

�
=

_

�
(462)

_

�
=

c

v

d

dt

�
E

moc2

�

=
1

moc

dE

vdt
=

1

moc

dE

dx
(463)

P

dE=dt
� 2

3

e2=moc
2

moc2
dE

dx
(464)

So that the power radiated compared to the energy change per unit distance is

P =
2

3

e2

m2
oc

3

 
dE

dx

!2

(465)

Now we can compare the radiated power with the acceleration power

P

dE=dt
=

2

3

e2=moc
2

moc2
dE=dx

dE=dt

dE

dx
(466)

Note (dE=dx)=(dE=dt) � dt=(cdt) when � � 1. The ratio of powers, radiated to
acceleration, is negligible unless energy gain in 2:8 � 10�13 cm is of order of the rest
mass - i.e. for an electron� 0:511 MeV.
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11.6.2 Case II: acceleration perpendicular to motion

Centripetal acceleration:
_~� ? ~�. ~a = c

_~� and ~v = c~�.
insert �gure / diagram to show vector directions

Then in the relation to �nd the rate of change of the energy-momentum four-
vector

1

c2

 
dE

dt

!2

� jd~p
dt
j2

E. =dt �= 0; since ~F ? ~v, so that no work is being done on the particle. Then

P = �2

3

e2

moc3
jd~p
d�
j2 (467)

and

jd~p
d�
j = !j~pj (468)

where ! = �c=� is the orbital angular frequency of an orbit with radius �. One can
derive this relationship

dp

p
= d� =

ds

�
=
vdt

�
= !dt

dp

dt
= !p

Thus

! =
�c

�

Now we can move on to the power loss rate

d� =
dt


p = �moc

P =
2

3

e2

m2
oc

3
2!2j~pj2

=
2

3

e2

m2
oc

3

 
�c

�

!
2 (�mc)2 (469)

P =
2

3

e2c

�2
�44 (470)

The energy gain for a particle per turn in an accelerator is

�E = 2��
P

v
(471)

169



The radiation loss is

�E =
4�

3

e2

�
�34 (472)

In practical units

�E=(1 MeV) = 8:85 � 10�2
(E=1 GeV)4

�=(1 meter)
(473)

The power radiated by a bunch of electrons

Power=(1 watt) = 106[�E=(1 MeV turn)][J=(1 amp)] (474)

provided the radiation is incoherent.
Aside: How to get these practical unit relations:

�E =
4�

3

e2

�
�34

Start by putting � = 1. If � is not very near to 1, then one gets negligible radiation
power.

 =
E

moc2
=
E(in GeV)

0:511 MeV

e2

�
=

e2

moc2
moc

2

�
= ro

moc
2

�
= (2:8� 10�13 cm)

0:511 MeV

� (in cm)

and the conversion from � in cm to m is �cm = 100�m. So that

�E =

"
4�

3

2:8� 10�13

100

0:511

(5:11 � 10�4)4

#
[E(in GeV)]4

� (in m)
MeV

=

"
8:85 � 10�2

[E(in GeV)]4

� (in m)

#
MeV

= 88:5
[E(in GeV)]4

� (in m)
keV (475)

Giving the conversion used above.

Power =
�E

Electron turn
� turn

sec
�Number of electrons

= �E
V

2��

2��J

eV
=
�E � J

e
Power (in kW) = 88:5[E(in GeV)]4J (in amps)=R (in m)

= 26:5[E(in GeV)]3B (in teslas)J (in amps)
�E (in MeV)

e
= �V (in MV) (476)

Now Some Numbers and History E.O. Lawrence invented the cyclotron
and the �rst was built here at Berkeley. Later his colleague Edwin McMillen (and
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Table 3: Parameters for Sample Accelerators

Accelerator LBL Cornell LHC ALS FermiLab SSC Elo
Max. Energy (GeV) 0.3 10 45 1-2 1000 20,000 104

Particle e e e e p-p p-p p
B (Tesla) 0.33 0.135 1.248 4.4 6.6 7.7
Radius (m) 1 100 4249 1000 11.7 km 50 km
Bending R (m) 4.01 10.1 km
Beam Current (ma) 400 73 100
Single Bunch (ma) 1.6 0.00167
E-gain/turn (MeV) 0.05 10.5 350 1 5.26
E-loss/turn (MeV) 0.001 8.8 0.112 0.001 18
Synchrotron Power 45 kW 9.1 kW 1.8 MW
RF Power (kW) 16000 300 1600 61000
RF (MHz) 713.94 352 500 53.1 374.74 412
Harmonic 1800 31324 328 1113 103,680 146500
Beam lifetime (hrs) 14 4 �24 48
Fill time 30 min 2.1 min 40 min 4 hrs

independently in the Soviet Union by V.I. Veksler) invented the idea of phase stability
which made the synchrotron possible.

Synchrotron radiation was �rst observed in a laboratory in 1947. That
laboratory was in Berkeley.

Early Synchrotrons:
First synchrotron was operated with 8 MeV electrons in 1946 by Goward and

Barnes in Woolwich Arsenal, UK. In 1947 GE labs operated an electron synchrotron
at 70 MeV. Soon after there were many operating.

An early synchrotron at Berkeley had a radius of about 1 meter and a
maximum energy of about 0.3 GeV. The synchrotron radiation �Emax � 1 keV/turn
could be noticed. The acceleration voltage was only a few keV/turn.

At big electron synchrotron was built at Cornell and operated at 10 GeV .
The radius was about 100 meters. It encloses a football �eld. The magnetic �eld was
B = 3.3 kG (0.33 Tesla). The accelerator voltage was about 10.5 MeV/turn and the
synchrotron losses were �Erad � 8:8 MeV/turn.

LBL Advanced Light Source is designed to provide synchrotron radiation as a
tool for research.
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11.7 Synchrotron Radiation Basics

Consider the non-relativistic case of a charged particle in a circular orbit caused by a
magnetic �eld. That particle will radiate electromagnetic waves at a frequency given
by the orbit frequency (or the Lamor frequency)

!L =
qB

mc
�L =

qB

2�mc

due to the acceleration of bending in the magnetic �eld. As the particle's energy is
increased relativistic e�ects will become important. For the same orbit the particle
will both begin to radiate more energy and at more frequencies - which are at the
orbit frequency and its harmonics. The peak power will be emitted at a frequency
which is at � 3 times the orbit frequency. In the next sections we will understand
this.

11.7.1 Synchrotron Emitted Power

To �nd the total emitted power we can use the Lamor (1897) formula

Pemitted =
2

3

q2

c3
j~aoj2 =

2

3

q2

c3
4
�
a2? + 2a2k

�

where ~ao is the particle acceleration in its instantaneous rest frame and the right hand
side of the equation uses the acceleration transform law from the particle rest frame.

dE

dt
= q~v � ~E

and since E = 0 we have  = constant.

~F =
d~P

dt
=

d

dt
(mo~v) = q~v�~B

With  = constant,

mo

d~v

dt
= q~v� ~B

Thus
dvk
dt

= 0;
dv?
dt

=
q

mo

~v?�~B

We can conclude jvkj = constant and jv?j = constant. We have uniform circular
motion of the projected motion on the normal plane. That is a simple helical motion
around the uniform magnetic �eld.

The frequency of rotation or gyration is

!B =
qB

moc
; ! a? = !Bv?
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Note that the gyration (orbit) frequency is the Lamor frequency divided by .
We can now evaluate the transformation of the Lamor formula for the power

radiated since we know a? = !Bv? and ak = 0

P =
2

3

q2

c3
4!2Bv

2
? =

2

3

q2

c3
4
 
qB

moc

!2

v2? =
2

3

q4B2

m2
oc
�2?

2

=
2

3
r2oc�

2
?

2B2

= 2�2?
2c�TUB = 2�22c�TUBsin

2�

where ro = e2=mec
2 is the classical radius of the electron, �T = 8�r2o=3 is the Thomson

crossection, UB = B2=8� is the energy density of the magnetic �eld, and � is the helix
pitch angle (angle of the gyrating particle with respect the magnetic �eld lines). This
is the relativistically correct form that we saw previously.

11.7.2 Synchrotron Radiation Frequency Spectrum

First we consider the frequency distribution of a monoenergetic distribution, i.e. we
consider the radiation from a particle at an energy E corresponding to . When the
particle's energy increases (as  grows larger) the aberration of angles moves most of
the radiated power into a cone of half angle �� � 1= in the instantaneous direction
of motion of the particle. Thus an observer will see a pulse of radiation whenever the
particle's instantaneous velocity sweeps past his direction. This will happen once per
orbit. This pulse will be narrow both because the aberration of angles and because of
the time dilation and Doppler e�ect. Since the relativistic particle is moving towards
the receiver (observer), the received pulse is sharpened (compressed in time) by a
factor of order �2. The time compression goes at

dt

d�
= 1 � �cos� � 1� � +��2=2! �2

where the limit comes for  � 1 since � =
q
1 � 1=2 ! 1 � �2=2 and ��2=2 �

�2=2.
Thus the observer will see a pulse every orbit with width �3 of the pulse

separation. Fourier theory tells us that the signal will appear at the orbit frequency
and its harmonics and that the power will peak at a frequency which is near 3�L
(where �B = !L=2� = qB=mec).

For a magnetic �eld B = 10�5 Gauss, which is a typical value in the Galaxy
and many powerful radio galaxies, �L = 28 Hz. The electrons that produce emission
at radio frequencies of a few GHZ therefore have Lorentz factors  � 103 � 104. The
spacing between successive harmonics is �B = �L=, for very high  this spacing is so
narrow as to negligible for all but the highest frequency resolution observations. In
astrophysical sources, this is often blurred and smoothed by variations in the electron
energy (a power law spectrum) and by variations in the magnetic �eld intensity and
direction.
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11.8 Astrophysical Synchrotron Radiation

11.8.1 Historical Note

Although nonthermal radiation had been observed from the Galaxy from the opening
of radio astronomy in the pioneering work by Karl Jansky in 1933, there was no clear
evidence of its origin. In 1950 Kiepenheuer suggested that Galactic nonthermal radio
emission was synchrotron radiation and Alfv�en and Herlofson proposed that non-
thermal discrete sources were emitting synchrotron radiation. Kiepenheuer showed
that the intensity of the nonthermal Galactic radio emission can be understood as the
radiation from relativistic cosmic ray electrons that move in the general interstellar
magnetic �eld. He found that a �eld of 10�6 Gauss (10�10 Tesla) and relativistic
electrons of energy 109 eV would give about the observed intensity. The early 1950s
saw the development of these ideas (e.g. Ginzburg et al. 1951 and following papers,
see Ginzburg 1969) that synchrotron emission was the source of non-thermal \cosmic"
radiation. This model was later supported by maps which showed that the sources of
the non-thermal components were extended nebulae and external galaxies and by the
discovery that the radiation was polarized as predicted by theory. The synchrotron
theory is widely accepted and is the basis of interpretation of all data relating to
nonthermal radio emission.

11.8.2 Context

Synchrotron radiation is a common phenonmen in astrophysics as there are almost
always plasma and magnetic �elds present and energetic electrons. Because of
stochastic scattering processes, the energetic electrons tend to be isotropically
distributed.

For an isotropic distribution of velocities one needs to average over all angles
for a given speed �. If � is the pitch angle, the angle between the magnetic �eld
direction and the particle velocity, then

< �2? >=
�

4�

Z
sin2�d


Thus

P =
�
2

3

�2
r2oc�

22B2 =
4

3
�T c�

22UB

where �T = 8�=3 r2o is the Thomson cross section and UB = B2=8� is the energy
density in magnetic �eld.

Electrons of a given energy (E = mec
2) radiate over a wide spectral band,

with the distribution peaking roughly at �c � 16:08(Be�=�G)(E=GeV)2 MHz, with
a long low-power tail at higher frequencies, and most of the radiation in a 2:1 band
from peak. The peak intensity is at �max = 0:29�c = 4:6(Be�=�G)(E=GeV)2 MHz.

The radiation from a single electron is elliptically polarized with the electric
vector maximum in the direction perpendicular to the projection of the magnetic
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�eld on the plane of the sky. Explicitly the total emissivity of a single electron via
synchrotron radiation is the sum of parallel and perpendicular polarization

j(�) =

p
3e3Bsin�

16�2�0cme

F (x) (477)

where � is the electron direction pitch angle to the magnetic �eld B and F (x) �
x
R1
x K5=2(�)d� is shown graphically in Figure ??.

The quantity x is the dimensionless frequency de�ned as x � !=!c = �=�c
where !c and �c are the critical synchrotron frequencies. An electron accelerated by
a magnetic �eld B will radiate. For nonrelativistic electrons the radiation is simple
and called cyclotron radiation and its emission frequency is simply the frequency of
gyration of the electron in the magnetic �eld.

However, for extreme relativistic ( � 1) electrons the frequency spectrum is
much more complex and extends to many times the gyration frequency. This is given
the name synchrotron radiation. The cyclotron (or gyration) frequency !B is

!B =
qB

mc
(478)

For the extreme relativistic case, aberration of angles cause the radiation from the
electron to be bunched and appear as a narrow pulse con�ned to a time period much
shorter than the gyration time. The net result is an emission spectrum characterized
by a critical frequency

!c �
3

2
2!Bsin� =

32qB

2mc
sin� (479)

To understand the astrophysical radiation, one must consider that cosmic ray
electrons are an ensemble of particles of di�erent pitch angles � and energies E. It
can generally be assumed that the directions are fairly isotropic so that integration
over pitch angles is straightforward.

The next step is integration over electron energy spectrum to determine the
total synchrotron radiation spectrum.

If the electrons' direction of motion is random with respect to the magnetic
�eld, and the electrons' energy spectrum can be approximated as a power law:
dN=dE = N0E

�p, then the luminosity is given by

I(�) =

p
3e3

8�mc2

�
3e

4�m3c5

�(p�1)=2
LN0B

(p+1)=2
e� ��(p�1)=2a(p); (480)

where a(p) is a weak function of the electron energy spectrum (see Longair, 1994, vol.
2, page 262 for a tabulation of a(p)), L is the length along the line of sight through
the emitting volume, B is the magnetic �eld strength, and � is the frequency.

At very low frequencies synchrotron self-absorption is very important as
according to the principle of detailed balance, to every emission process there is
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a corresponding absorption process. At the lowest frequencies synchrotron self-
absorption predicts an intensity that increases as / �5=2.

The local energy spectrum of the electrons has been measured to be a power
law to good approximation, for the energy intervals describing the peak of radio
synchrotron emission (at GeV energies). The index of the power law appears to
increase from about 2.7 to 3.3 over this energy range (Webber 1983, Nishimura et
al 1991). Such an increase of the electron energy spectrum slope is expected, as the
energy loss mechanisms for electrons increases with the square of the electron energy.

The synchrotron emission at frequency � is dominated by cosmic ray electrons
of energy E � 3(�=GHz)1=2 GeV. The range of energies contributing to the radiation
intensity at a given frequency depends on the electron energy spectrum: the steeper
the electron distribution, the narrower the energy range (Longair 1994). For the case
of most of the Galaxy, this range is of order 15 to 50. The observed steepening of the
electrons' spectrum at GeV energies is used to model the radio emission spectrum at
GHz frequencies (e.g. Banday & Wolfendale, 1990, Platania et al. 1998).
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11.9 Free electron Lasers

The Free Electron laser (FEL) is a classical device that converts the kinetic energy
of an electron beam into electromagnetic radiation by passing it through a transverse
periodic magnetic �eld (called the "wiggler"). In contrast with conventional lasers,
the radiation of the FEL is not constrained by the discrete energy levels that �x the
wavelength of emission. The wavelength of FEL radiation depends mainly on the
wavelength of the periodic magnetic �eld and the energy of the electron beam. High
peak powers and its large range of operational wavelengths make it a laser of the
future. A simple schematic representation of the FEL is given in the following �gure.

A key feature is that the FEL is a true laser producing coherent radiation.
Coherent radiation happens when the FEL is biased in the resonant condition. This
leads to an e�ect where the electrons bunch more tightly so that they radiate as
a single coherent bunch. For N electrons acting independently, the radiation is
proportional to Ne2. If the N electrons act coherently, as if a single particle, then
the radiation is proportional to N2e2.

One could seed the laser with an electromagnetic wave for speci�c applications
but to have a completely tunable laser, generally the FEL operates on the principle
of a single-pass free electron laser operating the self-ampli�ed spontaneous emission
(SASE) mode. Electron motion through the undulator with alternating magnetic
�elds forces the electrons into a sinusoidal trajectory leading to electromagnetic
radiation which recouples to the electron bunch causing laser action through SASE.
The radiated power increases along the electron beam path leading to exponential
increase in intensity. With high enough electron current and long enough undulator
the power is saturated and energy oscillates between the electron and photon beam.
If the resonant condition is met the energy exchange between the electron and photon
beam leads to microbunching and coherent emission.

It should be noted that the FEL does not require any mirrors or resonating
laser cavity structure. This is a great advantage at short wavelengths where, for
example, mirrors and optics are technicaly di�cult.

One can think about the FEL in steps: (1) What is the wavelength of light
emitted by an electron traveling down the FEL magnet structure? Once can �nd this
by using the synchrotron radiation formula or by transforming to the rest frame of
the electron to �nd the frequency of oscillation by the magnets and then transforming
the radiation to the lab by the Doppler formula. The approximate answer is

� =
�magnetic structure

22

(2) What is the resonant condition? The undulator gives a resonance condition
between the electron bunch and the electromagnetic wave, when one undulator
period (travel length) �u gives a time di�erence between the electron bunch and
electromagnetic wave corresponding to one period of the electromagnetic wave. In
that situation the electrons are always going uphill against the electric �eld and thus
adding power to the electromagnetic wave. That condition for very small transverse

177



movement of the electrons is that

�t = �u=v � �u=c = �=c = �u=(2
2c)

11.10 High Gain Free Electron Lasers

Motivation for high-gain FELs are as microwave sources for advanced accelerators
and e�cient sources of short wavelength radation. The basic physics is that a beam
of electrons is injected along the axis of an undulator (a transverse, periodic (�0),
magnetostatic �eld Bo(z), No periods). The electrons are periodically deected and as
a result radiate synchrotron radiation. The primary features of synchrotron radiation
are spontaneous emission which is incoherent: I � Ne, in a narrow cone: � � 1=,
and narrow bandwidth:

dI

d!d

� sinc2

�
�N0

! � !s

!s

�
(481)

which peaks at ! = !s = 2�=�s (and we will see that the resonant condition is at
�s = (1 � �k)�o=�k.)

In the electron rest frame the wiggler �eld looks like N0 period radiation �eld
with wavelength

�0s = �00 = �0=k

where 2k = 1=(1��2k ). Thus the electron oscillaesN0 times. It produces a wavepacket
of length N0�

0
0 peaked at wavelength �

0
0. The spectrum of the radiation is the Fourier

transform of a plane wave truncated after N0 oscillations:

I(!) = sinc2
�
�N0

�!

!s

�
(482)

In the laboratory frame, �s is the Doppler upshifted wavelength

�s =
�0s
2k

' �0

22k
(483)

The exact solution is

�s =
1� �k
�k

�0

A free electron laser has tunability via change in electron energy or the
undulator.

1

2
= 1� �2k � �2? '

1

2k
� a20
2

(484)

where a0 is he dimensionaless vector potential of the undulator

a0 =
e�0B0

2�m0c2
helical
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= 0:934B0�0 per Tesla cm

=
e�0B0

2
p
2�m0c2

planar

= 0:66B0�0 per Tesla cm (485)

and

2k =
2

1 + a20
(486)

or

�s =
�0

22

�
1 + a20

�
(487)

11.10.1 Stimulated Emission

Inject a laser beam with � ' �s along the axis of the undulator. The electrons move
along curved path at ve<c. Therefore vk<c. Light moves down the4 axis at vz = c.
If an electron has the resonant energy ER = Rm0c

2

2R =
�0

2�

�
1 + a20

�
(488)

then the relative phase between transverse electron and radiation oscillations remains
constant. Depending upon the phase the electron can give energy to the �eld and
decellerate, _<0 (stimulated emission) or take energy from the �eld and accelerate,
_>0.

An issue is that at the entrance of the undulator the electron phases are
randomly distributed. For low gain, half of electrons will accelerate and half will
decellerate. For low gain < 0 >> R. This is what is observed for the �rst FEL, the
Mdey laser in 1976 operated at 10.6 �m.

But if undulator is long enough and the current is high enough, then energy
modulation will result in space modulation. There will be \self-bunching" and it will
be around a \right" phase for gain. Most electrons will have the same phase and the
intensity will be proportional to the number of electrons squared. I / N2

e . This is
collective instability of self-bunching and exponential gain.

11.10.2 Self-Consistent Theory

To fully describe FELs, we need a many particle, self-consistent theory that combines
relativity for the electron mechanics and trajectories including the transverse current
J?, Maxwell's equations (or the special relativistic version), and an expression for the
radiation �eld.
Wiggler Field

~B0 = ~r� ~A0

Radiation Field

~E = �1

c

@

@t
~A ~B = ~r� ~A
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Trajectory Equation

dp

dt
=

d

dt
(m0v) = e

�
~E +

1

c
~v � ( ~B0 + ~B)

�

Energy Equation
dE

dt
==

d

dt
(m0c

2) = e ~E � ~v = eEv?

The total �eld on electrons from the vector potential ~Atot

~Atot = ~A0 + ~A

which is the total from the wiggler and radiation. ~A0 is periodic (spatially) either
planar or helical

~A0 =
1p
2
(êe�ik0z + c:c:)

for the helical �eld which leads to circularly polarized radiation:

~A = � ip
2

h
AêeI(kk�!t) � c:c:

i

where ! = ck = c
q
kk + k2? where k? allows for waveguides. Let k? = 0: Then

d

dt
(m0v?) = e

�
E +

1

c
(v �B)?

�

= �e
c

"
@Atot

@t
� (v �r�Atot)?

#

= �e
c

d

dt
Atot (489)

d

dt
(�?) = � e

mc2
dAtot

dt
dtatot (490)

For perfect on-axis injection �?(0) = 0 and

�? = �atot

' �a0



12 Uniform Acceleration

This material is to prepare a transition towards General Relativity via the Equivalence
Principle by �rst understanding uniform acceleration.

The Equivalence Principle stated in a simple form: Equivalence Principle: A
uniform gravitational �eld is equivalent to a uniform acceleration.

This is not very precise statement and one lesson we have learned in Special
Relativity is the need to be precise in our statements, de�nitions, and use of
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coordinates. We will come to a more precise statement of the Equivalence Principle

in terms like at a space-time point with gravitational acceleration ~g there is a tangent
reference frame undergoing uniform acceleration that is equivalent. This is similar to
the instantaneous rest frame of Special Relativity in the case of an object undergoing
acceleration.

We �rst need to understand carefully what is a uniform acceleration reference
frame, which we will do in steps.

First imagine a reference frame { a rigid framework of rulers and clocks,
our standard reference frame { undergoing uniform acceleration. In classical
nonrelativistic physics we can imagine a rigid framework to which we can apply a
force which will cause it to move with constant acceleration.

However, in Special Relativity no causal impulse can travel faster than the
speed of light, thus the frame work cannot be in�nitely rigid. When the force causing
the acceleration is �rst applied, the point where the force is �rst applied begins to
accelerate �rst and as the casual impulse moves out, the other portions join in the
acceleration.

Consider a simple long rod as an example: If one pulls on a long rod, it will
lengthen at �rst as the end being pulled starts moving before the other end even
knows it is. Then as it gains speed, Lorentz-FitzGerald contraction will cause it to
shorten. If one pushes on the long rod from behind, it will �rst shorten as the end with
the force moves toward the other end which sits there unaware of the some to arrive
acceleration. All objects, however rigid, evidently display some degree of elasticity
during acceleration. It is clear that in Special Relativity no rod can be in�nitely rigid
but must be elastic at some level. (Home work problem: prove that since the speed
of sound is less than or equal to the speed of light, that the rigidity of any material
is less than xxx?)

As a body accelerates, it moves in a continuous fashion from one inertial system
to another. If it is to retain its same rest length in its instantaneous rest system, then
it length relative to its original inertial system will have to decrease continuously
because of Lorentz-FitzGerald length contraction. If, on the other hand, it retained
the same length relative to the original inertial system, then the Lorentz-FitzGerald
contraction would require its rest length to increase as its gains speed. This is not
very satisfactory.

Either way, the metric will depend upon time. If we want a direct comparison
to gravity, we need to require an accelerated coordinate system to have a time
independent form.

12.1 Accelerating a Point Mass

A uniformly accelerating point mass is one that is subject to the same force in each
and every one of its instantaneous rest systems. I.e. a uniformly accelerating point
mass is subject to a constant force ~F = mo~g along the +x-axis in a coordinate system
which is the inertial frame where its velocity is zero (instantaneous rest frame).
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Light Cone

x

ct

Rest Frame S
Instantaneous Laboratory Frame S0

ctL = ct0

xL = x0

�
�
�
�
�
�
�
�
�
�
��

@
@
@
@
@
@
@
@
@
@

6

x0

--

66

Acceleration transforms as

ax =
d2x

dt2
=

a0x

3
�
1 + vu0x

c2

�3 (491)

so that in the instantaneous rest frame a = �3a0. In the instantaneous rest frame
Fx = F 0

x. Now we can solve the equation of motion in either of two ways: from the
acceleration or from the force. In Problem Set 2 we solved the problem for a uniformly
accelerating rocket using the acceleration transformation. 3

Here we use force transformation.

F 0
x =

dp0x
dt0

= mog = Fx

dmo�c
2

dct0
= mog

d(�) =
g

c2
d(ct0)

� =
g

c2
(ct0) =

gt0

c
(492)

where the constant of integration is set equal to zero because we de�ne the time zero
to be when � = 0. This can be turned into an equation for � alone:

� =
�p

1� �2
=

g

c2
(ct0) =

gt0

c

�2

1 � �2
=

 
gt0

c

!2

3In rocket frame the acceleration was a0

x
= g (Note reversal of S0 and S compared to discussion

in this section.) Thus the acceleration in the Earth frame was ax =
�
1� v2=c2

�3=2
g = dvx=dt.

Regrouping we had gdt = dux=
�
1� v2=c2

�3=2
and integrating gives gt = v=

p
1� v2=c2 or

v=c = gt=c=
p
1 + (gt=c)2.
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� =
(gt0=c)q

1 + (gt0=c)2
(493)

So that, from the laboratory, observing the test particle start from rest we �rst see
its velocity increasing linearly with time as we classically expect for a particle under
uniform acceleration. Then as the velocity begins to be a signi�cant fraction of
the speed of light, the term in the denominator becomes increasing important and
the velocity increases ever more slowly in time and only approaches the speed of
light asymptotically. The shape of the trajectory of a particle undergoing uniform
acceleration is a hyperbola and not the classical parabola, but for low velocities they
are indistinguishable conics.

Note also

 =
1p

1� �2
=

s
1 +

�
gt0

c

�2
(494)

If we look at the Lorentz factor , we see that it is �rst very nearly unity and then
as the velocity begins to saturate,  increases linearly with time. This is simply
conservation of energy, as the constant acceleration (force in the instantaneous rest
frame) is constantly doing work W = cF .

Now we can solve for x0 using the de�nition of � = dx0=d(ct0).

dx0 = �d(ct0)

x0 = xo +
Z ct0=c� 0

ct0=0
�d(ct0) = xo +

Z ct0=c� 0

ct0=0

gt0=cq
1 + (gt0=c))2

d(ct0)

=
c2

g

s
1 +

�
g

c2
(ct0)

�2
jct0=c� 0t0=0 + x0o

=
c2

g

q
1 + (g� 0=c)2 � c2

g
+ x0o (495)

De�ne

x0P � x0o �
c2

g
(496)

Then our equation becomes

x0 � x0P =
c2

g

s
1 +

�
g

c2
c� 0
�2

�
g

c2
(x0 � x0P )

�2
= 1 +

�
g

c2
c� 0
�2

�
g

c2
(x0 � x0P )

�2
�
�
g

c2
c� 0
�2

= 1 (497)

This last equation describes a hyperbola.
Because the world line is a hyperbola in Minkowski space, the world line of

the point mass approaches the light line asymptotically. This means all events on the
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world line will have a space like relationship to all events to the left of the focal point
P � (0; x0P ).

x0P = x0o �
c2

g
(498)

So that the distance between the rest point and focal point is proportional to the
inverse of the acceleration.

insert �gure here showing frames with small acceleration and with

large accelerations.

� =
g� 0=cr

1 +
�
g� 0

c

�2 g

c2

�
x0 � x0p

�
=

s
1 +

�
g� 0

c

�2
(499)

Therefore

� =
c� 0

x0 � x0P
= tan� (500)

where � is the horizontal angle.
insert �gure here showing � etc. The line from point P, (0; x0P ) to

point (c� 0; x0) is the x axis in the instantaneous rest frame. De�nes simultaneity
in instantaneous rest frame is changing constantly since the instantaneous rest frame
is continuously changing.

insert �gure here showing world lines etc. and that P is a pivot

point.

The observer A no matter where along his world lines never knows the future
of the observer passing through the pivot point and objects to the left are never in
casual contact but if they did would appear to move backward through time. ....

Now calculate the distance from event P = (0; x0P ) to event (c�
0; x0)

 
c2

g

!2
= (x0 � x0P )

2 � c2� 02 (501)

combining that with the equation for � yields

� =
c� 0

x0 � x0P
�2 (x0 � x0P )

2
= c2� 02 (502)

Evaluate this for � 0 = 0 to get the distance, xPA, between event P and where A
crosses the x0 axis.

(xPA)
2 =

 
c2

g

!2

= (x0 � x0P )
2 � �2 (x0 � x0P )

2
=
�
1� �2

�
(x0 � x0P )

2
(503)

(x0 � x0P ) = x0PA (504)
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Lorentz contraction x0PA = xPA=.
It is easy to show that the distance from the pivot point to any point on the

hyperbolic trajectory is the same. The accelerating system moves in such a way
that the distance to the pivot point is increasing in inertial space by precisely its
instanteous gamma so that the Lorentz length contraction makes the distance to the
pivot point in its rest frame constant. I.e. if the line of simultaneity intersects A's
trajectory at point B then from the hyperbola formula above for all B we have

(x0B � x0P ) = x0PA (505)

Thus xB � xP = xPB = x0PA The distance from the pivot point event (0; xP ) to the
mass point at B as measured in the accelerated coordinate system is the same as the
distance from the pivot point event (0; xP ) to the mass point when it was at rest or
any other point on its trajectory. Therefore to an observer in the accelerated system
the point mass maintains a �xed distance to the pivot point event (0; xP ) throughout
its motion. Thus despite accelerating away continously the eternal moment remains
a �xed distance away.

12.2 Uniformly Accelerated Reference Frame

We are now in a position to discuss a uniformly accelerated reference frame.
insert �gure of two uniformly accelerating masses with same focal

point.

Consider two observers (1) and (2) both with the same focus point x0p and
both cross the x0-axis at the same � 0 = 0. Then there is always the same distance
from x0p and thus each other. As a result they will have to have di�erent accelerations
because they have the same focus

a1 = g1 = c2=x01 a2 = g2 = c2=x02 (506)

This is what one sees in the �gure with the curves further away from the focal point
being atter. A straight line is a the world line for a non-accelerating particle.

One can make a uniformly accelerated frame, if the acceleration of each
point is inversely proportional to its distance from the focus point x0p. Actually
(ct0; x0) = (0; x0p).

An observer riding with a meter stick in this accelerated frame would say it
maintained a constant length. An observer in an inertial frame (e.g. our Lab frame)
claims the rod is shrinking in time as it accelerates away. However, as it approaches
the origin, it lengthens and slows down.

A rod on the other side of the origin accelerates to the left rather than the
right.

This situation is called a Rindler Space.
Note that the coordinate choices are di�erent from our usual every day

conventions. Usually we chose the vertical axis to be the z-axis and have the e�ective
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acceleration \downward" toward negative z. What we would observe conventionally
from our inertial frame would be an elevator rushing doward towards us at high speed
and decellerating at a rate g coming to a stop at a distance and then accelerating
upwards away retracing its path.
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12.3 Alternate Discussion to be integrated

We revisited the Lorentz transformation in the case of circular motion, that is, motion
with a uniform speed but continously changing direction, in the case that results in
Thomas precession. Now we consider the velocity transformation.

12.3.1 Instanteous Velocity Transformation

The Lorentz transformations of space-time coordinates

t0 =  (t� �x=c)
x0 =  (x� �ct)
y0 = y

z0 = z (507)

and their converse (primes exchanged with unprimes and � = v=c with �� are
di�erentiated with respect to t0 and used to �nd the velocity

~u = (u1; u2; u3) = (
dx

dt
;
dy

dt

dz

dt
)

~u0 = (u01; u
0
2; u

0
3) = (

dx0

dt0
;
dy0

dt0
dz0

dt0
) (508)

u01 =
u1 � v

1� u1v=c2
; u02 =

u2

(1� u1v=c2)
; u03 =

u3

(1 � u1v=c2)
(509)

u1 =
u01 � v

1� u1v=c2
; u2 =

u02
(1� u01v=c2)

; u3 =
u03

(1 � u01v=c2)
(510)

No assumption as the uniformity of ~u (or ~u0) has been made. These equations apply
equally to the instantaneous velocity in non-uniform (or circular) motion.

Now consider the magnitudes u and u0 de�ned as

u2 = u21 + u22 + u23; u02 = u021 + u022 + u023 (511)

Now we can readily calculate the (u) transformation laws by factoring out the (dt)2

and (dt0)2 from (cd� )2 = (cdt)2 � (d~r)2 = (cdt0)2 � (d~r0)2 and substituting in for u0i

dt2(c2 � u2) = (dt0)2(c2 � u02) = dt22(v)(1� u1v=c
2)2(c2 � u02): (512)

c2 � u02 =
c2(c2 � u2)(c2 � v2)

(c2 � u1v)2
(513)

(u0)

(u)
= (v)

�
1� u1v

c2

�
(u)

(u0)
= (v)

 
1 +

u01v

c2

!
(514)
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Now note how simple this is in the instanteous rest frame:

(u0) = (v)(u)

This should remind you of the rapidity formulation given in the homework. where
the rapidity is de�ned as the rotation angle

�(u) = tanh�1
�
u

c

�
; tanh(�(u) =

u

c
(515)

�(u) = �(u0) + �(v) (516)

Di�erentiating this with respect to time gives us a simple way to work out the
acceleration transformation.

12.3.2 Acceleration Transformation

d

dt
�(u) =

d

dt0
�(u0)

dt0

dt
(517)

Since the derivative of the hyperbolic tangent is the hyperbolic secant

d

dt
�(u) =

1

c
2(u)

du

dt
(518)

Since
dt0

dt
=
(u0)

(u)
(519)

Substituting we obtain the acceleration transformation formula

3(u0)
du0

dt0
= 3(u)

du

dt
(520)

Under the Galilean transformation, the acceleration is invariant; but, acceleration is
not in Special Relativity.

We need to de�ne the proper acceleration

j~aj � � �= 3(u)
du

dt
=

d

dt
[(u)u] (521)

where � is measured in the instantaneous rest frame.
Now constant instanteous acceleration (constant proper acceleration) is a

particularly simple case. Integrating and chosing u = 0 at t = 0 (or vice versa)
one �nds

�t = (u)u (522)

Thus at low velocity u increases linearly with t and as u! c (u) grows linearly with
time. Squaring, solving for u, and integrating again, chosing zero as the constant of
integration yields

x2 � (ct)2 = c4=� � X2 (523)

Thus, for obvious reasons, rectilinear motion with constant proper acceleration is calle
hyperbolic motion.
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12.4 Rindler Space, Symmetry and GR

The equivlance principle implies a new symmetry and thus associated invariance.
With a realization and the uniqueness of solutions give a formulation to the theory
of gravity.

The strong and weak Equivalence Principle: The weak equivalence principle
is that gravitational and inertial masses are precisely equal (also includes Lorentz
invariance). The strong equivalence principle applies to all laws of nature that no
experiment can distinguish between an accelerating frame of reference and a uniform
gravitational �eld.

We can also use this symmetry approach to �nd the Rindler space. Consider
an \generalized elevator" as a kind of rocket ship in outer space far from the strong
inuence of Earth or any other body. Now give the \elevator" a constant acceleration
g upwards. All inhabitants of the \elevator" will feel the pressure from the oor,
just as if they were living in the gravitational �eld at the surface of the Earth (or
equivalent). This is a method of constructing \arti�cial" gravitational �eld. We now
consider this arti�cial gravitational �eld more carefully.

Suppose we want this arti�cial gravitational �eld to be constant in space and
time. We will �nd that we can make the arti�cial gravitational �eld uniform in time
and two spatial directions but it must decrease in the direction of the �eld itself. The
inhabitants will feel a constant acceleration.

Consider a coordinate grid for an elevator free to accelerate uniformly or be
in a uniform gravitational �eld, which we take to be �� inside the elevator, such that
points on the elevator wall and oor are given by �i and are constant. The zeroth
component �0 = c� , where � is the proper time (elapsed instanteous rest time in the
elevator). An observer in outer space uses a standard Cartesian grid x� in an inertial

frame there. The motion of the elevator is described by the function x�(~�).
That is the elevator is free to move only along one axis (the \vertical" axis).

We designate the \vertical" direction to be the z-axis. The origin of the ~� coordinates
is a point in the middle of the oor of the elevator, which for convenience coincides
with the origin of the ~x coordinates at t = � = �0(� ) = 0. Thus the coordinates of
the origin (center point of elevator oor) will be

~� = (c�; 0; 0; 0) ~xc = (ct(� ); 0; 0; z(� )) (524)

Time (� ) run at a constant rate for the observer inside the elevator.

 
@x�

@�

!2

=

 
@ct

@�

!2

�
 
@z

@�

!2

= c2: (525)

The acceleration is set to be ~g, which is the spatial portion of the four-acceleration:

~a =
@2x�

@� 2
= g�: (526)
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At � = 0 we can specify that the velocity of the elevator is zero:

@x�

@�
= (c;~0) (at � = 0): (527)

We can make use of the di�erential proper time along any world line d� = dt=.
Using the relation

 =
1p

1 � �2
=

s
1 +

�
gt

c

�2
(528)

we �nd

� =
Z

dtr
1 +

�
gt
c

�2 = g

c
sinh�1

�
gt

c

�
(529)

Inverting this equation we �nd a relationship for t in terms of �

gt

c
= sinh

�
g�

c

�
(530)

This equation works for the origin. The acceleration depends upon location so that
the more general formula becomes

ct =

 
�3 +

c2

g

!
sinh

�
g�

c

�
(531)

z = x3 =

 
�3 +

c2

g

!
cosh

�
g�

c

�
� c2

g
(532)

At that moment t and � coincide, and if the acceleration ~g is to be be constant,
then at � = 0, @~g=@� = 0, so that

@

@�
g� = (F;~0) =

F

c

@

@�
x� � = 0; (533)

where F is an unknown constant.
Now this equation is Lorentz covariant. So not only at � = 0, but also at all

times we should have
@

@�
g� =

F

c

@

@�
x� (534)

Combining equations x and y gives

g� =
F

c
(x� +A�) =

g2

c2
(x� +A�) =

g2

c2
(x� + ��3

c2

g
);

x�(� ) = B�cosh(g�=c) + C�sinh(g�=c)�A�; (535)
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F �, A�, B�, and C� are constants. F = g2=c can be found from the derivative of
four acceleration evaluated at � = 0. Then from equations 16, 17, and the boundary
conditions:

(g�)2 = cF = g2; B� =
c2

g

0
BBB@
0
0
0
1

1
CCCA ; C� =

c2

g

0
BBB@
1
0
0
0

1
CCCA ; A� = B�; (536)

and since at � = 0, the acceleration is purely spacelike. We �nd that the parameter
g is the absolute value of the acceleration.

We notice that the position of the elevator oor at \inhabitant time" � is
obtained from the position at � = 0 by a Lorentz boost around the point x� = �A�.
This must imply that the entire elevator is Lorentz-boosted. The boost is given by
the rotation matrix with angle � = g�=c. This observation immediately gives the
coordinates of all other points in the elevator. Suppose at � = 0,

x�(0; ~�) = (0; ~�) (537)

Then at other � values

x�(c�; ~�) =

0
BBBB@

sinh(g�=c)
�
�3 + c2

g

�
�1

�2

cosh(g�=c)
�
�3 + c2

g

�
� c2

g

1
CCCCA (538)

The 0 and 3 (height) components of the � coordinates, imbedded in the x
coordinates, are pictured in the next �gure. The light cone de�nes the boundary
of the space at � = 0 the coordinates lie on the positive x3 axis in a very ordinary
way. Each x3 coordinate follows a hyperbola in x3 and c� that keep it in the right
quadrant (in x3- c� plane. The description of the quadrant of space time in terms of
the � coordiates is called \Rindler space".

It should be clear that an observer inside the elevator feels no e�ects that
depend explicity on his time coordinate � , since a transition for � to � 0 is nothing but
a Lorentz transformation.

We also notice some important e�ects:
(i) Equal � lines (lines of simultaneity) converge at the left (at the x3 � c� origin).

It follows that the local clock speed, which is given by � =
q
(@x�=@c� )2. varies with

height � x3:
� = 1 + g�3=c2; (539)

(ii) The acceleration or gravitational �eld strength felt locally is ��2~g(�), which is
proportional to the distance to the point x� = �A�. So even though the �eld is
constant in the transverse direction and with time, it decreases with height (x3).
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(iii) The region of space-time described by the observer in the elevator is only part
of all of space-time, where x3 + c2=g > jx0j. The boundary lines are called (past and
future) horizons.

All of these are trypically relativistic e�ects. In the non-relativistic limit
(g ! 0) the coordinates simplfy to

x3 = �3 +
1

2
g� 2; x0 = c�: (540)

According to the equivalence principle the relativistic e�ects discovered here should
also be features of gravitational �elds generated by matter (or energy). Let us inspect
them individually.

Observation (i) suggest that clocks will run slower, if they are deep down in a
gravitational �eld. Indeed as one suspects equation x will generalize to

� = 1 + �(x)=c2 (541)

where �(x) is the gravitational potential. This will be true, provided that the
gravitational �eld is stationary (not time varying). This e�ect is called the
gravitational redshift.

Relativistic e�ect (ii) could have been predicted by the following argument.
The energy density of a gravitational potential is negative. Since the energy of two
masses M1 and M2 at a distance r apart is E = �GnM1M2=r, we can calculate the
energy density of a �eld ~g as T00 = �(1=8�Gn)j~gj2. If we have normalized c = 1,
this is also its mass density. But then this mass density in turn should generate a
gravitational �eld! This would imply

~@ � ~g = 4�GnT00 = �
1

2
j~gj2

so that the �eld strength should decrease with height. However, this reasoning is too
simplistic, since the �eld obeys a di�erential equation but without the coe�cient 1/2.

The possible emergence of horizons (iii) turns out to be a new feature of
relativistic gravitational �elds. Under normal circumstances the �elds are so weak
that no horizon will be seen, but gravitational collapse may produce horizons. If this
happens, there will be regions of space-time from which no signals can be observed.

The most important conclusion to be drawn is that in order to describe a
gravitational �eld, one may have to perform a transformation from the coordinates
�� that were used inside the elevator where one feels the gravitational �eld, toward
coordinates x� that describe empty space-time, in which freely falling objects move
along straight lines. Now we know that in an empty space without gravitational �elds
the clock speeds and the lengths of the rulers are described by a distance fuction c�
or ` as

(cd� )2 = �(d`)2 = g��dx
�dx�; where g�� = ��� � diag(1;�1;�1;�1) (542)
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In tems of the coordinates �� appropriate for the elevator, we have for in�nitesimal
displacement d��,

dx0 = sinh(g�=c)d�3 + (1 + g�3=c2)cosh(g�=c)d�;
dx3 = cosh(g�=c)d�3 + (1 + g�3=c2)sinh(g�=c)d�: (543)

This implies

(cd� )2 = �(d`)2 = (1 + g�3=c2)2(dc� )2 � (d~�)2: (544)

If we write this in the form

(cd� )2 = �(d`)2 = g��(�)d�
�d�� = (1 + g�3=c2)2(dc� )2 � (d~�)2: (545)

then we see that all e�ects that the gravitational �eld have on rulers and clocks can be
described in terms of space and time dependent �eld g��(�). Only in the gravitational
�eld of a Rindler space can one �nd coordinates x� inerms of these the function g��
takes the simple form shown. We will see that g��(�) is all that is ned to describe the
gravitational �eld completely.

Spaces in which the in�nitesimal distance cd� or d` is described by a space
time dependent fuction g��(�) are called curved or Riemann spaces. Space-time is
apparently a Riemann space.

We can write the metric more explicitly as

g�� =

0
BBB@
�(�)2 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCCA g�� =

0
BBB@
1=�(�)2 0 0 0

0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCCA (546)

where �(�) = 1 + g�3=c2.

dx� = (cd�; d~r) sx� = �2cd�; d~r) (547)

Note since the metric has the form

(cd� )2 = �(d`)2 = (1 + g�3=c2)2(dct2 � (d~r)2: (548)

then an object stationary at �xed ~r has proper time d� = �dt. A particle moving
with velocity ~v = d~r=dt will have proper time

d� =
q
(�dt)2 � (d~r=c)2 = dt

q
�2 � �2 = dt=� (549)

where � = 1=
p
�2 � �2.
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12.4.1 Uniformly Accelerating Clocks - Gravitational Freqency Shift

We could have derived these results by simply considering two clocks in a spaceship
(\rocket elevator") with constant acceleration or the Doppler e�ect on a photon
emitted at one end of the spaceship and received at the other and comparing this
to our thought experiment about a photon in a gravitational �eld. This approach is
much more physical but does not show all the features of the Rindler space.

Consider that the inertial (and by inference gravitational) \mass" of a particle
is given by the sum of its rest energy plus all other energies divided by c2. Thus the
inertial and gravitational mass of photon is E=c2 = h�=c2. If a photon changes its
gravitational potential through simple propagation then it must change its energy by
and amount �E = Egh=c2 where g is the acceleration of gravity and h is the height
change. Thus

�E

E
=

��

�
=
gh

c2
(550)

The fractional frequency change is the change in gravitational potential divided by
c2.

For comparison consider a lab accelerating at rate g with the two clocks
separated by a instanteous distance h along the acceleration direction. If the �rst
clock sends a photon of frequency �source, then the second clock recieves a photon
observed at frequency �observed we know that they are related by the Doppler formula
by

�observed = �source (1 + �cos�) (551)

Since the angle is either 0 or 180�,

�observed

�source
=  (1� �) (552)

The time it takes for the photon to get from the �rst to the second clock is
approximately �t = h=c and the velocity change is �v = g�t = gh=c or � = gh=c2

Di�erentially one has �2=�1 = 1 + gx=c2

The gravitational redshift was �st measured directly in the laboratory in 1960
by Pound and Rebka where they let a 14.4 keV -ray, emitted in the radioactive decay
of 57Fe, to fall 22.6 meters down an evacuated shaft where gh=c2 = 2:47� 10�15, and
they measured a fractional change in frequency of (2:57�0:26)�10�15, thus verifying
to that level the equivalence principle.

One could anticipate that for a spherical mass (M) in an otherwise at space-
time that the rate of clocks would vary as

dt(r)

dt(1)
= 1 � GM

c2r
(553)

12.5 Local Coordinates

It is sometimes better to use local standard clocks for the determination of velocity
and acceleration at each point, rather than referring to a single coordinate clock
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located at the origin. The former run faster than the latter by the factor �, so that
the local velocity �L of an object moving over coordinate intervals dx and dt is given
by

(�L)
i =

d

�d�
(xi) or (�L)

i =
1

�
�i (554)

A second application of this time derivative operator to (�L)i gives the connection
between coordinate and local acceleration:

�
_�L
�i
=

d

�d�
(�L)

i =
d

�d�

 
dxi

�d�

!
=

1

�2

"
_�i � @x�

�
�i�x

#
(555)

since @�� = (@x�)�x; hence,

(aL)
i =

1

�2

"
ai � g

�
�i�x

#
(556)

Thus the local acceleration of a free-falling body is

(aL)x = �g
�

"
1 � �2x

�2

#
; (aL)y =

g

�

�x�y

�2
; (aL)z =

g

�

�x�z

�2
(557)

Thus the acceleration depends upon the local velocity and the local value of g at any
point is found to be gL = g=� with the local velocity (�L)i = �i=� so that one can
write

(aL)x = �gL
h
1 � (�L)

2
x

i
; (aL)y = �gL (�L)x (�L)y ; (aL)z = �gL (�L)x (�L)z

(558)
Freee-falling local acceleration appear here exclusively in terms of local

velocities and the local acceleration constant gL.
When an object falls vertically, its acceleration (aL)x ranges between �gL and

0 depending n (�L)x, rather than between �g and +g as it does at the origin.

12.6 Dynamics

The 4-D momentum is de�ned in an accelerated system just as it is de�ned in an
inertial frame.

~p = m0~u p� = m0u
� = (p0; ~p) = m0

�(1; �x; �y; �z) (559)

where ~p = �m0c
2� and p4 = �m0c

2 where E = m0c
2 is the proper energy. For

m0 = 0 in these equations one replaces �m0c
2 by E0. Because this is a 4-D vector

multiplied by an invariant, it can be found either by using he known values of �� in the
accelerated system or by transforming the inertial 4-D momentum to the accelerated
system.
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In its covariant form, it is

p� = g��p
� = (��2p0; ~p) = (p0; ~p) (560)

so that
p0 = ��2m0c

2

There are evidently two entirely di�erent energies of an object in the accelerated
system; the covariant and he contravariant energies.

More generally, the covariant energy of an object is constant for any time-
independent metric.

12.7 Gravitational Redshift

The Euqivalence principle leads directly to two interesting predictions about the
behavior of light in the presence of gravity. The �rst e�ect is that as light climbs up
a gravitational gradient, its frequency decreases. The second is that light is deected
by a gravitational �eld.

These e�ects are obvious, if one knows that light consists of photons where
E = h� is the relation between the photon's kinetic energy E and the photon's
frequency �. Einstein's formula relating inertial mass mI to energy E = mIc

2. The
weak Equivalence Principle states mI = mG. For the work done by a gravitational
�eld with potential � on a particle of gravitational massmG as it traverses a potential
di�erence d� is�mGd�. This must equalDE, the gain in the particle's kinetic energy.
For a photon, dE = hd�, and so

hd� = �mGd� = �mId� = �E
c2
d� = �h�

c2
d�; (561)

and thus
d�

�
= �d�

c2
(562)

Integrating this equation over a �nite path from A to B, one �nes

�A

�B
= e�(�B��A)=c

2

=
e��B=c

2

e��A=c2
(563)

As for light bending in a gravitational �eld, imagine a ray of light as a stream
of photons; since these photons have inertial and gravitational mass, we expect them
to obey Galileo's principle and follow a curved path just like a Newtonian bullet
traveling at velocity c. That wold make, for example, the downward curvature of
a horizontal beam in the earth's gravitational �eld with x horizontal and z vertical
equal to

d2z

dx2
=

d2z

c2dt2
= � g

c2
: (564)

In units of years and light-yeas c = 1, and it so happens that g � 1.
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12.8 Static and Stationary SpaceTimes

A stationary �eld is one that does not change in time and a static one is one where
the sources do not move. The most important property of stationary spacetimes is
that they admit a preferred time. The metric of every static �eld can be brougt to
the canonical form

(cd� )2 = ds2 = e2�=c
2

c2dt2 � d~r2 = �2(cdt)2 � d~r2 (565)

where the last part uses our previous notation. We can calculate the elapsed proper
time

d� 2 = dt2
�
e2�=c

2 � �2
�
= dt2

�
�2 � �2

�
(566)

d� = dt
q
e2�=c

2 � �2 = dt
q
�2 � �2 = dt=� (567)

In the weak �eld limit�=c2 << 1, e2�=c
2 ' 1 + 2�=c2.

ds2 ' (1 + 2�=c2)c2dt2 � dl2

For a particle-worldline between two events P1 and P2, we have

Z P2

P1

ds =
Z t2

t1

ds

dt
dt = c

Z t2

t1

 
1 +

2�

c2
� v2

c2

!1=2

dt; (568)

where v = dl=dt is the coordinate velocity of the particle. The binomial approximation
gives

Z P2

P1

ds = c

Z t2

t1

 
1 +

2�

c2
� v2

c2

!1=2

dt = c

Z t2

t1

 
1 +

�

c2
� 1

2

v2

c2

!
dt = C(T1�T2)�

1

c

Z t2

t1

�
1

2
v2 � �

�
dt:

(569)
The condition that

R
ds be maximal is therefore equivalent to the last integral being

minmal. That is exacatly Hamilton's Principle.
One consequence which we can read o� immediately is what is called the

Shapiro time delay. A light-ray satis�es ds2 = 0 and thus e�cdt = �dl, the two signs
corresponding to the two possible directions of travel. Consequently a radar, or other
light signal, reected from a distant object will return to its emission point after a
coordinate time

�t = 2
Z
e��dl (570)

has elapsed there, where the integration is performed over the path of the signal.
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13 Di�erential Geometry

There is a strong connection between the geometry (symmetry) of Minkowski space
and dynamics. Further generalization of relativity requires incorporating a new
symmetry - the Equivalence Principle. That will be manifested as the more universal
Riemannian geometry of simple curved space-time. Riemannian invariance is not
limited to orthogonal or even linear transformations but includes all real, single-
valued transformations that are continuous with �nite �rst and second derivatives.
This will include curved space-times that do not admit a global Cartesian coordinate
system.

Through the Equivalence Principle gravity is replaced by space-time curvature.
Gravity is replaced by a local e�ect. Thus we do not need to know the full geometry
and topology but only the local di�erential geometry.

13.1 Invariant Length and the Metric Tensor

We want to generalize the concept of invariant length of Minkowski space. We de�ne
the invariant length and the generalized Riemannian metric by the equation

(ds)2 = g��dx
�dx� (571)

where the indices � and � are repeated and thus summed and in our case of a 3+1
dimensional geometry cycle from 0 to 3. It is easy to see that g�� is a tensor. If the
transforamtion for ~x0 to ~x is x� = x�(~x0), then

dx� =
@x�

@x0�
dx0� = a��0dx

0� (572)

If ds2 is the invariant length, then

(ds)2 = g��dx
�dx� = g0��dx

0�dx0� = g��a
�
�0dx

0�a��0dx
0� (573)

From this we can conclude
g0�� = g��a

�
�0a

�
�0 (574)

These geometry techniques have been more generalized to other dimensions
by mathematicians and we will work out some problems and examples in lower
dimensions for illustration and ease. This general bilinear form (product of two
di�erentials) of the metric is the class of Riemannian spaces. In Riemannian
geometry one must nearly always pay attention to the di�erence between covariant
and contravariant (co and contra variation with respect to the transformations).

For example, consider the metric for a two dimensional space

dxi = (dx; dy) gij =
�
1 0
0 1

�
(575)
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dxi = (dr; d�) gij =
�
1 0
0 r2

�
(576)

dxi = (dr; r2d�) gij =
�
1 0
0 1=r2

�
(577)

13.2 The Transformation

The general case is any primed coordinate system and any unprimed coordinate
systems connected by a transform on xi = xi(xi0). There are no restrictions on the
transformation except that it is continuous, real, single-valued, and its derivatives
exist over the region of interest. The indices run from 1 to n, the dimension of the
space. In di�erential form the transformation equations are

dxi = aij0dx
j0 and dxj0 = a

j0
i dx

i (578)

where

aij0 = [a] =
@xi

@xj0
and aj0i =

h
a�1

i
=
@xj0

@xi
(579)

giving
a
j0
i a

i
k0 = �

j0
k0 (580)

The coe�cients aj0i and aij0 are called the transformation coe�cients and the condition

a
j0
i a

i
k0 = �

j0
k0 or

h
a�1

i
� [a] = [1] (581)

reects the general requirement that any transformation followed by its inverse is
unity.

13.3 Parallel Displacement/Transport

When a vector is carried from one point to another without changing its magnitude
or direction, it undergoes parallel displacement. In a at Euclidean space, the idea
of of parallel displacement is perfectly clear. In terms of its Cartesian components,
it means that the vector's components remain unchanged as it moves from one place
to another.

Consider a (contravariant) vector ~A = (Ax; Ay) that is displaced along
a line that radiates from the origin. Its components Ax and Ay remain
constant under parallel displacement, so they have the same magnitude all
along the path. See �gure. The vector can also be speci�ed in terms of
components that are parallel and perpendicular to the radial line. ~A =
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(Ar; A?) where the unit component direction vectors are r̂ and �̂ respectively.
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In polar coordinates, the components of ~A = (Ar; A�)) in the radial direction
also reamins the same through out the displacement. That is the value of Ar are
constant and the same as in the (Ar; A?) case. However, the A� are not the same as
A?. The relationship between the two is given by A? = rA�.

From a variation of this eqation and recognizing that A? is constant, �A� can
be found as a function of r and �r:

�A? = �(rA�) = A��r + r�A� = 0 (582)

or

�A� = �A
�

r
�r (583)

As the vector moves outward in a +r-direction, its �-component decreases inversely
with r.

There is another way of obtaining this result in a more general way. Because
~A is a vector, its transformation to polar components�

Ar

A�

�
=
�
cos� sin�

� sin�
r

cos�
r

��
Ax

Ay

�
(584)

or written explicitly

Ar = Axcos� +Aysin�

A� = �1

r
Axsin� +

1

r
Aycos� (585)

Given that Ax, Ay, and � are constant for a radial translation, a variation of the �rst
equation is �Ar = 0 as laready noted and a variation on the second equation gives

�A� = �f�1

r
Axsin�+

1

r
Aycos�g

�A� =
1

r
f1
r
sin� � 1

r
Aycos�g�r = �A

�

r
�r (586)

A vector is parallel displaced, if it moves without changing its magnitude or
direction. But it is clear from this example that the directional change is dependent
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on the coordinate system. The magnitude (i.e. the square root of the invariant
length) is unchanged. under coordinate transformation, but when viewed in polar
coordinates, its components do vary and hence changes apparent direction. This is
not exactly what was de�ned as parallel transport though it is in some coordinate
systems. The de�nition of parallel transport will have to be broadened.

De�ne the indexed (not tensor) symbol �kij called a Christo�el symbol or a�ne

connection. As a vector Ai is parallel displaced over a di�erential �xj, its components
Ak are changed by an amount determined by the Christo�el symbols in the de�ning
equation

�Ak = ��kijAi�xj (587)

The values of these Christo�el symbols in Cartesian coordinates are zero, but they
are not zero in polar coordinates.

13.4 Geodesic Path

In Riemannian geometry, the term geodesic path means: the path of shortest invariant
distance. There is a strong connection between geodesic parths and the idea of parallel
displacement. A vector that moves tangent to a geodesic is, at the same time, being
parallel displaced as it moves along.

The geodesic path can be found using the variational principle to �nd the
shortest distance between two points, which in Riemannian geometry requires that
�
R
ds = 0 = �

R
d� The calculus of variations gives

d2xx

ds2
= �1

2
gks [gis;j + gjs;i � gij;s] _x

i _xj (588)

where the dot means derivative with respect to ds (or cd� ) _xk � dxk=ds and
gij;k = @kgij .

Multiplying by

d _xk = �1

2
gks [gis;j + gjs;i � gij;s] _x

idxj (589)

This equation describes how a contravariant vector _xj changes as it moves over a
pathdxj . It is the same as the de�nition of the Christo�el symbol. Clearly,

�kij =
1

2
gks [gis;j + gjs;i � gij;s] (590)

This equation allows the Christo�el symbols to be calculated from the metric tensor
alone. The geodesic equation becomes

d _xk

ds
= ��kij _xi _xj (591)
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13.5 Parallel Displacement of Covariant Vectors

Covariant vectors also change direction under parallel displacement. Consider the
inner invariant product of two vectors Ai and Bi. When the two are parallel displaced
together in a Cartesian system. If � represents the small variation of the product along
the line of displacement, then because it is an invariant,

0 = �(AiBi) = Ak�Bk +Bi�A
i (592)

Substituting �Ai = ��ijkAj�xk yielding

Ai�Bi = �Bk�A
k = �Bk(��kijAi�xj)Ai�Bi = Ai�kijBk�x

j (593)

Becasue this expression is true for any vector Ai, its coe�cients on either side of the
equation must be equal

�Bi = �kijBk�x
j (594)

The Christo�el symbol gives the changes in a covariant vector as well as the
contravariant one:

�Ak = �kijA
i�xj �Ai = �kijAk�x

j (595)

�Ai and �Ai are not vectors. Note that �Ai identically zero in the Cartesian
system but non-zero in the polar system. A zero vector cannot be transformed into
a non-zero one.

It is also possible to determine how a mixed tensor changes under a parallel
displacement. Consider the inner product between tensor T i

j and two vectors Ai and

Bj, while they are parallel displaced together: �(T i
jAiB

j) = 0 since the inner product
is invariant.

�T i
j = �rjsT

i
r�x

s � �irsT
r
j �x

s (596)

�T i
jk = �rjsT

i
rk�x

s + �rksT
i
jr�x

s � �irsT
r
jk�x

s (597)

13.6 Covariant Derivatives

Consider a contravariant vector A0i in the Cartesian system that is transformed to a
Cartesian system

Ai = aii0A
0i (598)

Taking the ordinary derivative of this gives

dAi = d(aii0)A
i + aii0dA

0i (599)

13.7 Space-Time Di�erential Geometry

13.8 Spherical Surface as an Example

Intuitively one knows that the curvature tensor for the space de�ned as on the
surface of a sphere should not be equal to zero. Every point on a sphere's surface is
intrinsically curved.
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13.9 Curvature Measures

If a vector is parallel dispalced around a closed loop in a at space, the it will return
to its original magnitude and direction. That should be true independent of the
coordiante systems in which the displacement is observed. So if a parallel-displaced
vector is changed by a trip around a closed loop, it follows that its region of travel is
a \curved" space.

A surface observer can use this procedure to detect the existance of curvature,
when visual recognition or imbedding in a higher dimensional at Cartesian space is
not part of the mathematical procedure.

�V � = �x��x�
h
����;� � ����;� + �����

�
�� � �����

�
��

i
V � (600)

13.9.1 Christo�el Symbols

�mij =
1

2
gmk [gik;j + gjk;i � gij;k] (601)

13.9.2 Curvature Tensor

Riemann Rk
ars = �kar;s � �kas;r + �bar�

k
sb � �bas�

k
rb

The intrinsic curvature at any point can be found in terms of derivatives of
the metric at that point.

One can �nd the curvature by transporting the same vector half way around
a di�erentially small rectangle in both directions and comparing the results. The
procedure is to �rst take the covariant derivative of a vector ~v with respect to xi,
then take the covariant derivative of this result with respect to xj:

Dxj (Dxi~v)

Then reverse the order and subtract

Dxj (Dxi~v)�Dxi (Dxj~v)

The vector ~v can be taken out of the additive terms in this tensor equation,
leaving the di�erential operators in the form of the tensor [R]. [R] is called the
Riemann-Christo�el curvature tensor.

Dxj (Dxi~v)�Dxi (Dxj~v) = [Dxi (Dxj )�Dxi (Dxj)~v = [R] � ~v

or
�~v=�area = [R] � ~v:

Remember that when a tesnosr is zero in one coordinate system, it is zero in all
coordinate systems. So if the Riemann-Christo�el tensor is zero at any point in any
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system of coordinates, then the space at that point is at. On the other hand, if [R]
is nonzero at a point, then the space has an intrinsic curvature at that point.

The Rimemann-Christo�el tensor can be explicitly derived by carrying out the
operations outlined above. This can be done using contravariant vector Ak. First take
the covariant derivative of Ak

Ak
;r = Ak

;r + �karA
a

Now take the next covariant derivative

Ak
;rs =

@

@xs
(Ak

;r) + �kasA
a
;r � �arsA

k
;a

where the index s representing the second covariant derivative is placed directly
behind the index r representing the �rst covariant derivative.

Ak
;rs �

h
Ak
;r

i
;s

Going back to the de�ntion of the covariant derivative Ak
;r above gives

@

@xs

h
Ak
;r�

k
arA

a
i
+ �kas

h
Aa
;r + �abrA

b
i
� �ars

h
Ak
;a + �kbaA

b
i

(602)

where the dummy index b is there to avoid repetitive use of index a in two of the
terms. Multiplying out one has

Ak
;rs = Ak

;rs + kar;sA
a�karA

a
;s + �kasA

a
;r + �kas�

a
brA

b � �arsA
k
;a + �ars�

k
baA

b (603)

This seven term expression is the result of two sequential covariant di�erentiations
of the vector ~A corresponding to the operations Dxj (Dxi~v) acting on vector ~v. Now
perform the same operations in reverse order and subtract. The reverse order of the
covariant di�erentiation is found by exchanging the indices s and r.

Ak
;sr = Ak

;sr + kas;rA
a + �kasA

a
;r + �karA

a
;s + �kar�

a
bsA

b � �asrA
k
;a + �asr�

k
baA

b (604)

This is equation is subtracted from the previous and the �rst, third, fourth, sixth
and seventh term in each cancels, leaving the di�erence betwen the second and fourth
terms:

Ak
;rs �Ak

;sr = �kar;sA
a � �kas;rA

a + �kas�
a
brA

b � �kar�
a
bsA

b (605)

The dummy indices a and b are now exchanged in the last two terms, and the vector
component Aa removed from each term to give

Ak
;rs �Ak

;sr =
h
�kar;s � �kas;r + �kbs�

b
ar � �kar�

b
as

i
Aa (606)

or one has
Ak
;rs �Ak

;sr = Rk
arsA

a (607)

where
Rk
ars = �kar;s � �kas;r + �kbs�

b
ar � �kar�

b
as (608)

This fourth-rank mixed tensor - Rk
ars - is the Riemann-Christo�el curvature tensor.
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13.9.3 Ricci Tensor and Scalar Curvature

Ricci Rij = Rk
ijk

Scalar R = Ri
i

We will contract the Riemann-Christo�el tensor in two steps. In the �rst of
these, the contravariant index is contracted with the last of the covariant indices to
give the Ricci tensor, which is de�ned as

Rij = Rk
ijk

Rij = �kij;k � �kik;j + �bij�
k
kb � �bik�

k
jb (609)

It is easy to show that this tensor is symmetric

Rij = Rji (610)

Other second-rank tensors can be found by contracting other indices; but the Ricci
tensor is of special importance because of its symmetry and because of the unique
properties of its derivatives. As a result it plays a major role in General Relativity.
Since it is symmetric it has the same number of independent components as the metric
tensor g�� and the stress energy tensor T�� and General Relativity provides a unique
way to link them together.
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13.10 Isometries

Tensor calculus is largely concerned with how quantities change under coordinate
transformations. It is of particular interest when a quantity does not change,
i.e. remains invariant, under coordinate transformations. For example, coordinate
which leave a metric invariant are of importance since they contain information
about the symmetries of the underlying Riemannian manifold. Just as in an
ordinary Euclidean space, there are two sorts of transformations: discrete ones,
like reections, and continuous ones, like translations and rotations. In most
applications, these latter types are the more important ones and they can in principle
be obtained systematically by obtaining the so-called Killing vectors of the metric.

A metric gab is from-invariant or simply invariant under the transformation
xa ! (x0)a, if

g0ab(~y) = gab(~y) for all coordinatesyc; (611)

that is, the transformed metric g0asb(~x
0) is the same function of its argument ~x0 as

the original metric gab(~x) is of its argument ~x. Then a transformation leaving gab
form-invariant is called an isometry. Since gab is a covariant tensor, it transforms
according to the equation above, or equivalently (interchanging primes and unprimes)

gab(x) =
@x0c

@xa
@x0d

@xb
g0cd(x

0): (612)

Then, using the equation from above, xa ! x0a will be an isometry, if

gab(x) =
@x0c

@xa
@x0d

@xb
gcd(x

0): (613)

Consider all quantities appearing in this equation to be functions of x using x0a =
x0a(x). In general, this condition is very complicated, but it may be greatly simpli�ed,
if we consider the special case of an in�nitesimal coordinate transformation

xa ! x0a = xa + �Xa(x) (614)

where � is small and arbitrary and Xa is a vector �eld. Di�erentiating gives

@x0a

@xb
= �ab + �@bX

a (615)

Now substituting into the transformation equation and applying Taylor's theorem

gab(x) = (�ca + �@aX
c)(�db + �@bX

d)gcd(x
e + �Xe)

= (�ca + �@aX
c)(�db + �@bX

d)[gcd(x) + �Xe@egcd(x) + :::]
= gab(x) + �[gad@dX

d + gbd@aX
d +Xe@egab] +O(�2): (616)
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Working to �rst order in � and subtracting gab(x) from each side, it follows that the
quantity in the square brackets must vanish. This quantity is simply the Lie derivative
of gab with respect to X, namely,

LXgab = Xc@egab + gad@bX
d + gbd@aX

d (617)

Now we can replace ordinary derivative and so, the condition for an in�nitesimal
isometry becomes

LXgab = XcreXa +raXb = 0: (618)

These equations are called Killing's equations and any solution of them is called a
Killing vector �eld Xa. The metric is dragged into itself' by the vector �eld Xa.

Theorem: An in�nitesimal isometry is generated by a Killing vector

Xa(x) satisfying LXgab = 0:
It is su�cient to restrict attention to in�nitesimal transformations because

it is possible to build up any �nite transformation with non-zero jacobian (i.e. a
continuous transformation) by an integration process involving an in�nite sequence
of in�nitesimal transformations.

14 The Schwarzschild Solution from Symmetry

14.1 Stationary Solutions

A metric will be stationary, if there exists a special coordinate system in which the
metric is visibly time-independent, i.e.

gab

@x0
�= 0; (619)

where x0 is a timelike coordinate. In an arbitrary coordinate system the metric will
probably depend explicitly on all the coordinates; so we need to make the statement
coordinate independent. De�ne a vector �eld

Xa � �a0 (620)

in the special coordinate system, then,

LXgab = Xcgab;c + gacX
c
;b + gbcX

c
;a � �c0gab;c = gab;0 = 0 (621)

LXgab is a tensor, of if it vanishes in one coordinate system, it vanishes in all coordinate
systems. Hence, Xa is a Killing vector �eld. Conversely, a given timelike Killing
vector �eld Xa, then there always exists a coordinate system which is adapted to
the Killing vector �eld,, that in which the last equation holds, and then

0 = LXgab � gab;0; (622)

and so the metric is stationary. This is a coordinate-independent de�nition.
A space-time is said to be stationary, if and only if, it admits a time

like Killing vector �eld.

207



14.2 Hypersurface-orthogonal vector �elds

To discuss static solutions in a coordinate-independent way, we need to introduce
the concept of a hypersurface-orthogonal vector �eld. The equation of a family of
hypersurfaces is given by

f(xa) = � (623)

where di�erent members of the family correspond to di�erent values of �. Consider
two neighboring points with coordinates xa and (xa+ dxa), respectively, lying in one
of the hypersurfaces, S.

� = f(xa + dxa) = f(xa) +
@f

@xa
dxa (624)

to �rst order. Thus

0 =
@f

@xa
dxa (625)

evaluated at xa. De�ne the covariant vector �eld na to the family of hypersurfaces
by

na �
@f

@xa
dxa (626)

then becomes
nadx

a = gabn
adxb = 0

which tells us that na is orthogonal to the in�nitesimal contravariant vector �eld
dxa. Since dxa lies in S by construction, it follows that na is orthogonal to S and is
therefore known as the normal vector �eld to S at xa. Any other vector �eld Xa

is said to behypersurface-orthogonal, if it is everywhere orthogonal to the family
of hypersurfaces, in which case it must be proportional to na everywhere, i.e.

Xa = �(x)na

for some proportionality factor �, which in general will vary from point to point.

14.3 Gravitational Waves - Weak Field Approximation

In the weak gravitational �eld approximation:

g�� = ��� + h�� ; where h�� << 1 (627)

The Christo�el symbol

���� =
1

2
g�� [g��;� + g��;� � g��;� ]

=
1

2
g�� (h��;� + h��;� � h��;� )

' 1

2
��� (h��;� + h��;� � h��;� ) (628)
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The Ricci curvature tensor is

R�� = ����;� � ����;� + �����
�
�� � �����

�
��

' 1

2

�
h��;�� + h��;�� �22h�� � h��;��

�
(629)

where all terms second order (products of h��) have been dropped. If one choses the
guage:

h��;� �
1

2
h��;� = 0 (630)

this choice of guage is one in which test particles will retain a �xed coordinate value.
In combined matter-energy free region R�� = 0 so that 22h�� = 0. Solution to four
dimensional Laplacian (wave equation) is

h�� = h��(x� ct) (631)

for a wave traveling in the x direction. This form results in only a few surviving
Riemann-Christo�el tensor R���� components. Applying the Einstein �eld equations
to these survivors shows that all the components of h�� are zero except h22, h33, with
h22 = h32. Applying the guage condition yields h33 = �h22.

h�� =

2
6664
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 �1

3
7775h22(x� ct) or =

2
6664
0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

3
7775h23(x� ct) (632)

Gravitational waves have two transverse polarizations, like electromagnetic waves,
and the independent functions h22 and h23 are their amplitudes. However, the
polarization does not have the same meaning as the EM case. It does not represent
dipole oscillations along the y and z axes respetively, for the leading component of
gravitational radiation is quadrupole. The metric is then

ds2c2dt2 � dx2 � (1 + h22)dy
2 + (1� h22)dz

2 � 2h23dydz (633)

The invariant separation for two free particles separated by a distance �y is

�s = �y
q
1 + h22 ' �y(1 +

1

2
h22)

In the z direction

�s = �z
q
1 � h22 ' �z(1� 1

2
h22)

If h22 varies sinsoidally so does the physical separation. A rigid rod (\ideal") keeps
physical separation �s = constant so that �y varies sinusoidally:

�y ' (1� 1

2
h22)�s

The h22 and h23 are called the plus and cross linear polarizations respectively.
One can conbine these to get two (left and right handed) circular polarizations.

[12pt,epsf]article
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P139 - Relativity

Problem Set 15: Quantum Gravity & Cosmology 1998 May

G. F. SMOOT
Department of Physics,

University of California, Berkeley, USA 94720

15 Quantum Gravity

This course ends with a summary of the issues of quantum gravity. These include
quantum e�ects in classical gravity such as Hawking radiation, quantum uctuations
in Ination, and radiation seen by an accelerating observer. There are problems of
extreme uctuations in the metric and the formulation of a consistent quantum theory
of gravity. This shows both fundamental aws in the classical gravity and quantum
mechanics which are the two major edi�ces of 20th century physics. We take a brief
excursion into zero point radiation showing that underneath there is a deep connection
between the structure of space-time (the vacuum), gravity, and quantum mechanics.
Then we head to the wave equation for the Universe and the wave function of the

Universe as the grand �nale.

15.1 Curvature/Horizon Radiation

In our discussion of the laws of black holes and the parallel to thermodynamics
we found an expression for the e�ective temperature and entropy of a black black
hole. Then we saw that Steven Hawking (1975 \Particle Creation by Black Holes"
Commun. Math. Physics 43, 199-220) showed that quantum e�ects produced a
thermal radiation from the surface gravity and horizon. For your homework you did
a heuristic calculation of the spontaneous creation of particles in a �eld (electric,
magnetic, or gravitational) to see how this happens. The e�ective temperature of the
black hole from both approaches is given by the formula:

kT =
�h�

2�c
=

�hc3

8�GM
T ' 6 � 10�8

�
M�
M

�
K (634)

S0 = S +
1

4
k
c3A

G�h
(635)

Both this calculation and the estimate of quantum uctuations in Ination
were made in a classical, though curved, geometry. That is the background metric
was well-de�ned and smooth in the region of interest. The metric itself did not
undergo uctuations in the straight forward approach. It is also possible to derive
the uctuations in the Ination case as uctuations in the scale factor or in the scalar
�eld driving ination.
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15.2 The Generalized Uncertainty Principle

The Heisenberg Uncertainty Principle tells us that the fundamental uncertainty in
position and thus spatial resolution is related to and limited by the uncertainty of
the momentum related with that direction.

�x�px � �h or �x � �h=�px (636)

That means if we want to probe and resolve to a distance �xwe must have a minimum
available momentum �px � �h�x. Thus:

dP lanck

EP lanck

�hc=E

hhhh
XXX

HHH

QQ

@
@@

S
S

A
AA

E
E
E

rs

���
���

���
���

���
���

���

�x

E; pc;E � pc� mc2
-

6

We also know that if we concentrate energy E within its Schwarschild radius, we can
get no information from inside the Schwarschild radius.

rs = GE=c2 (637)

These two limits cross each other at the Planck energy EP lanck and distance
dP lanck which can be calculated by setting the two distances equal and solving for the
energy and then feeding back to get the distance.

EP lanck =

 
�hc5

G

!1=2

= 1:22 � 1019GeV (638)

dP lanck =

 
G�h

c3

!1=2

= 1:6 � 10�35m (639)

This would then be the logical end point of black hole evaporation. I.e. either
the �nal and smallest black which falls apart or a stable quantum relic. Understanding
this issue is one of the motivations for quantum gravity.

15.3 Zero Point Radiation

Consider a classical vacuum with all matter and thermal radiation removed. Is there
anything else in the vacuum. The classical answer is yes. There is what we shall
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call the zero point radiation which is an isotropic, homogeneous radiation �eld with
spectral intensity proportional to the frequency cubed.

15.3.1 Casmir Force

The �rst indication that we have that this �eld must exist is the measured Casmir
force. If two uncharged metal plates are placed in a very cold vacuum, there is a force
that attracts one plate toward the other in an amount proportional to the area of the
plates and the inverse fourth power of the separation.

FCasmir = 0:2mg
A

d4
0:5� 10�4cm

1 cm2
(640)

Exercise Show that this is the force law if there is a radiation �eld with I / �3.

15.3.2 Consistent with Special Relativity

Show that an isotropic, homogeneous radiation �eld with I / �3 is the only radiation
�eld that is identical for all Lorentz-frame observers. That is that one cannot
determine one's absolute velocity by measuring the intensity, angular distribution,
or spectrum of this radiation.

15.3.3 Ideal Harmonic Oscillator

Suspend an electron from an ideal spring �xed on the inside wall of an ultracold,
ultrahigh vacuum chamber. (i.e. perfect vacuum and no thermal radiation)

If the electron is displaced from its equilibrium position, then it will begin
to oscillate and the acceleration will cause it to radiate. The back reaction of the
radiation on the electron will damp down the oscillations to match the radiated energy
and the electron oscillations will asymptotically approach zero amplitude.

Now if you include the e�ect of the radiation �eld with I / �3, show that the
electron continues to oscillate randomly with an amplitude that corresponds to the
Uncertainty Principle and with a rms energy equal to the zero point energy of the
harmonic oscillator. Thus the name zero point radiation even though no quantum
mechanics is thus far involved in this classical vacuum radiation �eld.

15.3.4 Uniformly Accelerating Observer Radiation

Show that an uniformly accelerating observer will see two radiation �elds the zero
point radiation with I / �3 and a thermal spectrum of radiation with

Tacceleration =
�ha

2�c
T ' 4� 10�23a K=(cms�1) (641)

Showing this relation then shows consistency with the Equivalence Principle since
a surface gravity � = gs gives exactly the same temperature. This also shows
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that black body radiation (Planckian distribution) arises classically from relativity
without recourse to quantum mechanics. Therefore we can conclude that some how
gravity/space-time and quantum mechanics are related at some deep fundamental
level.

15.4 Quantum Field Theory & Issues

Now that we know gravity and quantum mechanics are deeply related, then we are
ready to create a quantum �eld theory for gravity. First what is a �eld theory? Two
examples of �eld theory are:

Newtonian Gravity:

~F = ~Fgm =
GM

r2
mr̂ (642)

where ~Fg is the gravitational force �eld.
Electromagnetism:

F� = F��j
� (643)

where F�� is the electromagnetic �eld tensor.
We showed as part of the homework that the �elds of two objects create a

force through the mechanism of distorting the �eld lines to the minimum energy
con�guration so that there is a net force because of the �eld distortion.

Then quantum mechanics started with the �rst quantization of the relevant
measurable quantities of the particle or system under consideration.

The second quantization is the quantization of the �elds allowing them to be
treated as force carrying particles that are interchanged. This is the concept behind
the Feynman diagrams of particle interactions and this approach is called Quantum

Field Theory. A quantum �eld theory for gravity calls for a force carrier particle
given the name the graviton which is expected to be massless to obtain the 1=r2 force
law and to have spin 2 in order to always be attractive.

This all sounds great so what are the issues holding us back from a full �eld
theory of quantum gravity?

We will need a third quantization: an operator that creates and annihilates
universes. This is daunting in that one does not think of seeing universes created and
destroyed regularly. But wait there is more:
(1) Quantum �eld theories are based on the assumption that the wave function
commute: h

 ̂(x);  ̂(x0)
i
�  ̂(x) ̂(x0)�  ̂(x0) ̂(x) = 0 (644)

That is to say that if x and x0 are causally disconnected, then a measure at x0 of  ̂
cannot inuence the value of  ̂ at x. However what is the wave function for gravity?
It is going to be the probability amplitude of the metric. Does

[ĝab(x); ĝab(x
0)] = 0? (645)
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Only when x and x0 are in a space-like relation. We only know this is true when we
know what gab is and we are trying to �nd its wave function and thus uncertain value.
(2) Superposition is taken for granted in quantum �eld theory. The wave function
is routinely written as the sum over the orthonormal basis set of the wave equation
 =

P
states which assumes linearity However, gravity is non-linear and even more

of a problem the curvature of spacetime and a graviton are not readily separable
especially when the �eld strength variations are large.

insert picture showing curved space, add a recognizable graviton, and then a
chaotic structure of spacetime and defy the reader to �nd the graviton.
(3) Time: The entire causal structure of spacetime is destroyed when one attempts
to quantize g�� . Microcausality ... need background metric ...

...... superspace as a desired solution

ds2 = c2dt2 � g0adtdx
a � gabdx

adxb

i
@ 

@t
= H 

 (~x; t) = N

Z
c
�x(t) eiS(x(t))

where N is the normalization and C is the class of paths which are weighted in a
away that reects the projection of the system.

15.5 Wave Equation for the Universe"
�h2
8�

G
Gijkl

�2

�gij�glk

g1=2

8�=G

�
(3)R(x) � 2� � T

�#
 (gij) = 0 (646)

where

Gijkl =
1

2
g�1=2 (gikgjl + gilgjk � gijgkl) and T = T 0

0 (�;�i@=@�) (647)

This is not such a bad equation since it is for three instead of four dimensions
and gab is symmetric tensor giving us only six unknown functions. This is still a bit
much for this class but fortunately we can appeal to some boundary conditions and
symmetry.

214



15.6 Wave Function for the Universe

For a homogeneous, isotropy universe with a constant vacuum energy density �v this
reduces to a one dimensional problem. We get a wave equation which has as its
classical analog the Friedman equation, ( _a=a)2 + 1=a2 = �=3, for a vacuum energy
dominated universe (aka as DeSitter Space).

"
d2

da2
� a2

�
1 �H2a2

�#
 (a) = 0 H2 = 8�G�v=3 (648)

which has solution of the form a(t) = a0cosh(ct=a0), where a0 =
q
�=3. This is the

form of the Schr�odinger wave equation for a particle of zero energy with coordinate
a(t) (the scale factor for the universe) in potential U(a) = a2 (1�H2a2). The
classically allowed region is a � H�1. The solution to this equation is a linear
combination of Airy functions Ai[z(a)] and Bi[z(a)], where z(a) = (3�2a20=4G)

2=3(1�
a2=a20).

Figure 1: Potential for DeSitter Space Universe

Plot sample wave functions on this graph. The wave function one obtains
is set by the boundary conditions that one sets for the universe which in turn set
the coe�cients for the Airy functions Ai[z(a)] and Bi[z(a)]. The Hartle-Hawking,
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Vilenkin, and Linde wavefunctions are

	HH / Ai[z(a)]
	V / Ai[z(a)]Ai[z(0)]+ iBi[z(a)]Bi[z(0)]

	L / 1

2
(Ai[z(a)]+Bi[z(a)])

	yours / c1Ai[z(a)]+ c2Bi[z(a)] (649)

Chose your boundary condition and set the complex coe�cients c1 and c2 to match
your boundary conditions and show your results on the plot of the potential along
with the wave functions of Hartle-Hawking, Vilenkin, and Linde. Hint: It is good to

have your solution contain the expanding universe in the classical region.
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